

Elements de Physique des solides: Cours 1: structure cristalline, théorème de Bloch, bandes d'énergie

Gwendal Fève, gwendal.feve@ens.fr

Un cristal est un arrangement périodique d'atomes (avec une distance interatomique de l'ordre de l'Angström) dans lequel un même motif est répété à l'identique selon un réseau régulier. Ce réseau est appelé *réseau de Bravais (RB)* du cristal. Le réseau est défini par trois vecteurs de translation fondamentaux: $\vec{a_1}$, $\vec{a_2}$ et $\vec{a_3}$

Invariance par translation, $\vec{R} \in RB$: $\vec{R} = n_1 \vec{a_1} + n_2 \vec{a_2} + n_3 \vec{a_3}$, $n_1, n_2, n_3 \in \mathbb{Z}$

<u>Maille élémentaire</u>: en répétant la maille élémentaire avec la périodicité du réseau de Bravais, on obtient le cristal sans recouvrement. Exemple, parallélépipède défini par $\overrightarrow{a_1}, \overrightarrow{a_2}, \overrightarrow{a_3}$

Exemple: Graphène, monocouche atomique de graphite

Cristal = motif (aussi appelé base) + réseau

Exemple: Graphène, monocouche atomique de graphite

Cristal = motif (aussi appelé base) + réseau

Réseaux cubiques avec motif

Exemple: réseau cubique à faces centrées

Diamant (C, Ge, Si, etc.)

2 atomes par maille

Zinc Blende (GaAs, InP, etc.)

2 atomes par maille

Réseau réciproque (RR)

Soit $\overrightarrow{K} \in RR$, alors

$$\vec{K} = n_1 \overrightarrow{a_1^*} + n_2 \overrightarrow{a_2^*} + n_3 \overrightarrow{a_3^*} \qquad n_1, n_2, n_3 \in \mathbb{Z} \qquad \text{Avec:} \quad \overrightarrow{a_1^*} = 2\pi \frac{\overrightarrow{a_2} \times \overrightarrow{a_3}}{\overrightarrow{a_1} \cdot (\overrightarrow{a_2} \times \overrightarrow{a_3})}, \overrightarrow{a_2^*} = \dots$$

Propriétés importantes:	$\overrightarrow{a_i}$. $\overrightarrow{a_j^*} = 2\pi\delta$	Dij	
	$e^{i\vec{K}.\vec{R}} = 1$	pour tout $\vec{R} \in RB$ et tout $\vec{K} \in R$	R

Réseau de bravais	Réseau réciproque
Cubique simple	Cubique simple
Cubique centré	Cubique faces centrées
Cubique faces centrées	Cubique centré

Première zone de Brillouin

Cellule de Wigner-Seitz: c' maille élémentaire regroupant tous les points les plus proches d'un noeud du réseau

Cellule de Wigner-Seitz (zone grisée) d'un réseau carré

Cellule de Wigner-Seitz (zone grisée) d'un réseau triangulaire

La cellule de Wigner-Seitz du réseau réciproque s'appelle la première zone de Brillouin

Exemple:

RB: réseau cubique à faces centrées

RR: réseau cubique centré

première zone de Brillouin grisée

Diffraction de rayons X

Diffraction de rayons X

Méthode de Laue (historique)

Propriétés électroniques

N électrons (Z électrons par noyau), N_N noyaux supposés fixes aux positions $\overrightarrow{R_I}$

$$H = \sum_{i=1}^{N} \left(\frac{\overrightarrow{P_{i}}^{2}}{2m} - \sum_{I=1}^{N_{N}} \frac{e^{2}Z}{4\pi\varepsilon_{0} |\overrightarrow{r_{i}} - \overrightarrow{R_{I}}|} \right) + \frac{1}{2} \sum_{i \neq j} \frac{e^{2}}{4\pi\varepsilon_{0} |\overrightarrow{r_{i}} - \overrightarrow{r_{j}}|}$$

Energie cinétique des électrons Interaction Coulombienne noyau-électron: périodicité du réseau Interaction Coulombienne

Electrons sans interactions dans un potentiel périodique

$$H = \sum_{i=1}^{N} \left(\frac{\overrightarrow{P_i}^2}{2m} + U(\overrightarrow{r_i}) \right) \quad \text{avec} \quad U\left(\overrightarrow{r_i} + \overrightarrow{R}\right) = U(\overrightarrow{r_i}) \quad \text{pour tout} \quad \overrightarrow{R} \in RB$$

Théorème de Bloch

Opérateur de translation \vec{R} : $\hat{T}_{\vec{R}} = e^{i\hat{\vec{p}}\cdot\vec{R}/\hbar}$

Action sur une fonction d'onde $\psi(\vec{r})$: $\hat{T}_{\vec{R}}\psi(\vec{r}) = \int \frac{d^3\vec{p}}{h^3} e^{i\vec{p}\cdot\vec{R}/\hbar} e^{i\vec{p}\cdot\vec{r}/\hbar} \tilde{\psi}(\vec{p}) = \psi\left(\vec{r}+\vec{R}\right)$

Action sur un opérateur $\hat{V}(\vec{r})$: $\hat{T}_{\vec{R}}\hat{V}(\vec{r})\hat{T}_{\vec{R}}^{+} = \hat{V}\left(\vec{r} + \vec{R}\right)$

$$[H, T_{\vec{R}}] = 0 \text{ car } U\left(\vec{r} + \vec{R}\right) = U(\vec{r}), \text{ on a par ailleurs } [T_{\vec{R}}, T_{\vec{R'}}] = 0$$

On peut chercher des vecteurs propres communs à H et $\{T_{\vec{R}}\}$ Solution générale de l'équation de Schrodinger: $H\psi_{n,\vec{k}} = \varepsilon_{n,\vec{k}}\psi_{n,\vec{k}}$ avec $\psi_{n,\vec{k}}$ vecteur de Bloch:

$$\psi_{n,\vec{k}}(\vec{r}) = e^{i\vec{k}.\vec{r}}u_{n,\vec{k}}(\vec{r}) \text{ avec } u_{n,\vec{k}}\left(\vec{r}+\vec{R}\right) = u_{n,\vec{k}}(\vec{r})$$

Ou de manière équivalente: $\psi_{n,\vec{k}}\left(\vec{r}+\vec{R}\right) = e^{i\vec{k}\cdot\vec{R}} \psi_{n,\vec{k}}(\vec{r})$ (état propre de $T_{\vec{R}}$)

Important: si
$$\vec{K} \in RR$$
, $\psi_{n,\vec{k}+\vec{K}}(\vec{r}+\vec{R}) = e^{i\vec{k}\cdot\vec{R}}e^{i\vec{K}\cdot\vec{R}}\psi_{n,\vec{k}+\vec{K}}(\vec{r}) = e^{i\vec{k}\cdot\vec{R}}\psi_{n,\vec{k}+\vec{K}}(\vec{r})$

 $\psi_{n,\vec{k}+\vec{K}}$ et $\psi_{n,\vec{k}}$ sont les mêmes états propres (valeurs propres identiques)

Pour éviter de compter deux fois des états identiques, il faut restreindre \vec{k} a une maille élémentaire du réseau réciproque, en pratique on choisit la **première zone de Brillouin.**

Notes (calculs plus détaillés)

• En notations bra et ket: $\langle \vec{r} | \psi \rangle = \psi(\vec{r})$

$$\langle \vec{r} | \hat{T}_{\vec{R}} | \psi \rangle = \int \frac{d^3 \vec{p}}{h^3} \langle \vec{r} | \hat{T}_{\vec{R}} | \vec{p} \rangle \langle \vec{p} | \psi \rangle = \int \frac{d^3 \vec{p}}{h^3} e^{i \vec{p} \cdot \vec{r}/\hbar} e^{i \vec{p} \cdot \vec{R}/\hbar} \tilde{\psi}(\vec{p})$$

 $\langle \vec{r} | \hat{T}_{\vec{R}} | \psi \rangle = \psi(\vec{r} + \vec{R})$ Valable pour tout $|\psi\rangle \longrightarrow \langle \vec{r} | \hat{T}_{\vec{R}} = \langle \vec{r} + \vec{R} |$

Action sur un opérateur $\hat{V}(\vec{r})$: $\langle \vec{r} | V(\vec{r}) | \psi \rangle = V(\vec{r}) \psi(\vec{r})$

$$\left|\hat{T}\left|\hat{T}_{\vec{R}}V(\vec{r})\hat{T}_{\vec{R}}^{+}\right|\psi\right\rangle = \left\langle\vec{r} + \vec{R}\left|V(\vec{r})\hat{T}_{\vec{R}}^{+}\right|\psi\right\rangle = V(\vec{r} + \vec{R})\left\langle\vec{r} + \vec{R}\right|\hat{T}_{\vec{R}}^{+}\left|\psi\right\rangle = V(\vec{r} + \vec{R})\psi(\vec{r})$$

$$\widehat{T}_{\vec{R}}V(\vec{r})\widehat{T}_{\vec{R}}^{+} = V\left(\vec{r} + \vec{R}\right) = V(\vec{r}) \text{ si } V(\vec{r}) \text{ est périodique}$$

Dans ce cas on a bien: $\hat{T}_{\vec{R}}U(\vec{r}) = U(\vec{r})\hat{T}_{\vec{R}}$ c'est à dire $\left[U(\vec{r}), T_{\vec{R}}\right] = 0$

•
$$\psi_{n,\vec{k}}(\vec{r}) = e^{i\vec{k}.\vec{r}}u_{n,\vec{k}}(\vec{r})$$
 est bien un état propre de $T_{\vec{R}}$:
 $\left\langle \vec{r} \left| \hat{T}_{\vec{R}} \right| \psi_{n,\vec{k}} \right\rangle = e^{i\vec{k}.(\vec{r}+\vec{R})}u_{n,\vec{k}}\left(\vec{r}+\vec{R}\right) = e^{i\vec{k}.\vec{R}}\psi_{n,\vec{k}}(\vec{r})$

Exemple: les électrons libres : $U(\vec{r}) = 0$

Energies propres: $\varepsilon_{n,\vec{k}}$, bandes d'énergies repérées par l'indice n fonction de \vec{k} restreint à la première zone de Brillouin.

 $\hbar \vec{k}$ est appelé quasi-impulsion, elle est différente de l'impulsion \vec{p} , valeur propre de l'opérateur $\hat{\vec{p}}$.

Lien entre les deux types d'états propres: un état propre de l'impulsion $\hat{\vec{p}}$ (valeur propre \vec{p}) est aussi état propre de $T_{\vec{R}}$ (valeur propre $\vec{k} \in PZB$) avec $\frac{\vec{p}}{\hbar} = \vec{k} + \vec{K}$, où $\vec{K} \in RR$. En revanche, un état propre de $T_{\vec{R}}$ n'est pas nécessairement un état propre de $\hat{\vec{p}}$

Exemple, électrons libres dans un solide 1D:

Représentation usuelle, états propres de l'impulsion $\hat{\vec{p}}$ (zone étendue): $\epsilon = \frac{p^2}{2m}$

Représentation en états de Bloch $\epsilon_{n,k}$, états propres de $T_{\vec{R}}$ car $U(\vec{r}_i) = 0$ est un cas particulier de potentiel périodique

Lien entre les deux représentations, deux types d'états propres: état propre de l'impulsion: $p/\hbar = k + n \frac{2\pi}{a}$ est état propre de $T_{\vec{R}}$ avec la valeur propre $k \in \left[-\frac{\pi}{a}, \frac{\pi}{a}\right[$

$$\epsilon_{n,k} = \frac{\hbar^2}{2m}p^2 = \frac{\hbar^2}{2m}(k+n\frac{2\pi}{a})^2$$

Electrons presque libres, bandes d'énergie

On considère maintenant
$$H = \sum_{i=1}^{N} \left(\frac{\overrightarrow{P_i}^2}{2m} + U(\overrightarrow{r_i}) \right)$$
 avec $U(\overrightarrow{r_i}) \neq 0$ mais faible

On peut traiter de manière perturbative l'effet du potentiel $U(\vec{r_i})$ en partant des électrons libres

Levée de dégénérescence des états dégénérés: $\varepsilon_{n,k} = \varepsilon_{n+1,k}$ \longrightarrow $k = 0, \pm \frac{\pi}{a}$

LPENS Electrons presque libres vs méthode des liaisons fortes

Méthode des liaisons fortes: combinaison linéaire des orbitales atomiques

Électrons presque libres

Orbitales atomiques→liaisons fortes

Remplissage des bandes: électrons de valence et de coeur

Les électrons des couches atomiques profondes (électrons de cœur) ne donnent pas naissance à des bandes d'énergie (largeur de bande très faible).

On ne considère que les électrons de valence pour le remplissage des bandes d'énergie

 N_{v} : nombre d'électrons de valence par atome \times nombre d'atomes par maille

Cristal de taille finie:

 N_1 sites suivant $\overrightarrow{a_1}$, N_2 sites suivant $\overrightarrow{a_2}$, N_3 sites suivant $\overrightarrow{a_3}$ ($N_T = N_1 N_2 N_3$ sites au total)

 $\psi_{n,\vec{k}}(\vec{r} + \overrightarrow{a_1}) = e^{i\vec{k}.\overrightarrow{a_1}}\psi_{n,\vec{k}}(\vec{r})$

 $\psi_{n,\vec{k}}(\vec{r}+N_1\overrightarrow{a_1})=\psi_{n,\vec{k}}(\vec{r})$

car conditions aux limites périodiques

car état de Bloch

Valeurs de \vec{k} quantifiées:

$$\vec{k}_{l_1, l_2, l_3} = \frac{l_1}{N_1} \vec{a}_1^* + \frac{l_2}{N_2} \vec{a}_2^* + \frac{l_3}{N_3} \vec{a}_3^* \qquad \text{avec} - \frac{N_i}{2} \le l_i < \frac{N_i}{2}$$

Nombre d'états par bande: $2(spin) \times N_T(nombre \ de \ valeurs \ de \ \vec{k})$ Nombre de bandes remplies $\frac{N_v N_T}{2N_T} = \frac{N_v}{2}$ (attention, si les bandes ne se

recouvrent pas!)

Métaux et isolants/semi-conducteurs

Exemple du cas unidimensionnel:

Dernier niveau d'énergie occupé, énergie de Fermi E_F

Métal, états accessibles à énergie arbitrairement faible: pas de gap

Isolant (ou SC): cout énergétique fini pour accéder à un niveau inoccupé: gap d'énergie

Différence entre isolant et semi-conducteur: valeur du gap, pour quelques eV on parle de semi-conducteur (un peu arbitraire)

Alcalins: *Li*: 1*s*²2*s*¹ *Na*: [*Ne*]3*s*¹ K: [*Ar*]3*s*¹

DE L'ÉCOLE NORMALE SUPÉRIEURE

Maille cubique centrée 1 atome par maille

$$N_v = 1$$

Bande demi-remplie: métal

	GROUPE		гл е	2 I E		I D	ED					EC			ЛСР	ITC	2	
	1 IA					ЈГ		IUI		ίΟc		EJ		. [])	18 VIIIA
DE	1 1.0079											_		http://w	ww.period	dni.com/fi	r/	2 4.0026
02 1	H			MASSE AT	OMIQUE REI	LATIVE (1)	Mé	taux 📕	Métalloïdes	Non-m	nétaux	-						He
ΡÉ	HYDROGÈNE	2 11A	GROU	JPE IUPAC	G	ROUPE CAS	Mé	taux alcalins		Chalco	ogènes		13 IIIA	14 IVA	15 VA	16 VIA	17 VIIA	HÉLIUM
	3 6.941	4 9.0122	NOMBRE AT	OMIQUE	10.811		Mé	taux alcalino-	terreux	Halogé	ènes		5 10.811	6 12.011	7 14.007	8 15.999	9 18.998	10 20.180
2	Li	Be	63	MDOLE	D		Mé	taux de trans	ition	Gaz no	obles		В	C	N	0	F	Ne
	LITHIUM	BÉRYLLIUM	51	MBOLE -	D		1.1	Actinides	ETAT	PHYSIQUE	(25 °C; 101 kl	Pa)	BORE	CARBONE	AZOTE	OXYGÈNE	FLUOR	NÉON
	11 22.990	12 24.305			BORE		_	, 101111000	Hg	- liquide	TC - synthé	tique	13 26.982	14 28.086	15 30.974	16 32.065	17 35.453	18 39.948
3	Na	Mg		NOM I	DE L'ÉLÉMEN	T							Al	Si	Р	S	Cl	Ar
	SODIUM	MAGNÉSIUM	3 B	4 IVB	5 VB	6 VIB	7 VIIB	8	9 VIIIB -	10	11 IB	12 IIB	ALUMINIUM	SILICIUM	PHOSPHORE	SOUFRE	CHLORE	ARGON
	19 39.098	20 40.078	21 44.956	22 47.867	23 50.942	24 51.996	25 54.938	26 55.845	27 58.933	28 58.693	29 63.546	30 65.38	31 69.723	32 72.64	33 74.922	34 78.96	35 79.904	36 83.798
4	K	Ca	Sc	Ti	V	Cr	Mn	Fe	Со	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
	POTASSIUM	CALCIUM	SCANDIUM	TITANE	VANADIUM	CHROME	MANGANÈSE	FER	COBALT	NICKEL	CUIVRE	ZINC	GALLIUM	GERMANIUM	ARSENIC	SÉLÉNIUM	BROME	KRYPTON
	37 85.468	38 87.62	39 88.906	40 91.224	41 92.906	42 95.96	43 (98)	44 101.07	45 102.91	46 106.42	47 107.87	48 112.41	49 114.82	50 118.71	51 121.76	52 127.60	53 126.90	54 131.29
5	Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	Ι	Xe
	RUBIDIUM	STRONTIUM	YTTRIUM	ZIRCONIUM	NIOBIUM	MOLYBDÈNE	TECHNÉTIUM	RUTHÉNIUM	RHODIUM	PALLADIUM	ARGENT	CADMIUM	INDIUM	ETAIN	ANTIMOINE	TELLURE	IODE	XÉNON
	55 132.91	56 137.33	57-71	72 178.49	73 180.95	74 183.84	75 186.21	76 190.23	77 192.22	78 195.08	79 196.97	80 200.59	81 204.38	82 207.2	83 208.98	84 (209)	85 (210)	86 (222)
6	Cs	Ba	La-Lu	Hf	Та	W	Re	Os	Ir	Pt	Au	Hg	Tl	Pb	Bi	Po	At	Rn
	CÉSIUM	BARYUM	Lanthanide	HAFNIUM	TANTALE	TUNGSTÈNE	RHÉNIUM	OSMIUM	IRIDIUM	PLATINE	OR	MERCURE	THALLIUM	PLOMB	BISMUTH	POLONIUM	ASTATE	RADON
	87 (223)	88 (226)	89-103	104 (267)	105 (268)	106 (271)	107 (272)	108 (277)	109 (276)	110 (281)	111 (280)	112 (285)	113 ()	114 (287)	115 ()	116 (291)	117 ()	118 ()
7	Fr	Ra	Ac-Lr	Rf	IDb	Sø	IBh	IHIS	MIt	Ds	Rg	Cm	Uut	Fl	Uup	Lv	Uus	Uuo
	FRANCIUM	RADIUM	Actinides	RUTHERFORDIUM	DUBNIUM	SEABORGIUM	BOHRIUM	HASSIUM	MEITNERIUM	DARMSTADTIUM	ROENTGENIUM	COPERNICIUM	UNUNTRIUM	FLEROVIUM		LIVERMORIUM	UNUNSEPTIUM	UNUNOCTIUM

																Ci	opyright © 2012	2 Eni Generalić
	LAN	THAN	DES															
(4) Due And Cham 84 No. 44 0404 0456 (0000)	57	138.91	58 1	40.12	59 140	91 60	0 144.24	61 (145)	62 150.36	63 151.96	64 157.25	65 158.93	66 162.50	67 164.93	68 167.26	69 168.93	70 173.05	71 174.97
(1) Pure Appl. Chem., 61, No. 11, 2131-2156 (2009)					-			-	-				_					_
La masse atomique relative est donnée avec		12	(e	Pr		Nd	1Pmn	Sm	En	Gd	Tb	Dv	Ho	Er	Tm	Yb	Lu
cinq chiffres significatifs. Pour les éléments	-		-				- 1		~		04	-~	23				-~	
qui n'ont pas de nucléides stables, la valeur	LAN	THANE	CÉF	RIUM	PRASEODY	AE NÉ	ÉODYME	PROMÉTHIUM	SAMARIUM	EUROPIUM	GADOLINIUM	TERBIUM	DYSPROSIUM	HOLMIUM	ERBIUM	THULIUM	YTTERBIUM	LUTÉTIUM
entre parenthèses indique le nombre de masse	ACT	TINIDES	;															
de l'isotope de l'élément ayant la durée de vie la plus grande. Toutefois, pour les trois éléments	89	(227)	90 2	32.04	91 231.	92	2 238.03	93 (237)	94 (244)	95 (243)	96 (247)	97 (247)	98 (251)	99 (252)	100 (257)	101 (258)	102 (259)	103 (262)
(The Page at 11) gui ont une composition									. ,									
isotonique terrestre connue une masse		Ac	Т	h	Pa		U	NID	1Pnn	Am	Cm	Blk	Cf	Rs	TRimn	Md	No	TI III
atomique est indiquée	1		-				-	T Alle	11 00	AICCOUL		12/113	911	10000		2.11.00	210	10011
atomque est marquee.	AC	TINIUM	THO	RIUM	PROTACTIN	UMU	JRANIUM	NEPTUNIUM	PLUTONIUM	AMÉRICIUM	CURIUM	BERKÉLIUM	CALIFORNIUM	EINSTEINIUM	FERMIUM	MENDELÉVIUM	NOBÉLIUM	LAWRENCIUM

Métaux nobles: *Cu*: $[Ar] 3d^{10} 4s^1$ $Ag: [Kr] 3d^{10} 4s^1$ $Au: [Xe] 3d^{10}4s^1$

DE L'ÉCOLE NORMALE SUPÉRIEURE

Maille cubique faces centrées 1 atome par maille

$$N_{v} = 11$$

5 Bandes remplies, une bande demi-remplie: métal

(1) Pure

	GROUPE	- 1	гл е		= A I	ID	ÉD					EC	Ć I			ITC		
	1 IA		AC			ЈГ				ίΩc		EJ		. []				18 VIIIA
DE	1 1.0079											_		http://w	ww.perioo	dni.com/fi	r/	2 4.0026
1 RIO	H			MASSE AT	OMIQUE REI	LATIVE (1)	Mé	taux 📕	Métalloïdes	Non-m	nétaux	-						He
ΡÉ	HYDROGÈNE	2 11A	GROU	JPE IUPAC	G	ROUPE CAS	Mé	taux alcalins		Chalco	ogènes		13 IIIA	14 IVA	15 VA	16 VIA	17 VIIA	HÉLIUM
	3 6.941	4 9.0122	NOMBRE AT	OMIQUE	10.811		Mé	taux alcalino-	terreux	Haloge	ènes		5 10.811	6 12.011	7 14.007	8 15.999	9 18.998	10 20.180
2	Li	Be	SV	MBOLE -	R		Mé	taux de trans	ition	Gaz n	obles	Ц.	В	С	N	0	F	Ne
	LITHIUM	BÉRYLLIUM	51	MBOLL	D			Actinides	ETAT	PHYSIQUE	(25 °C; 101 k	Pa)	BORE	CARBONE	AZOTE	OXYGÈNE	FLUOR	NÉON
	11 22.990	12 24.305			BORE				Hg	- liquide	TC - synthé	tique	13 26.982	14 28.086	15 30.974	16 32.065	17 35.453	18 39.948
3	Na	Mg		NOM I	DE L'ÉLÉMEN	Т							Al	Si	Р	S	Cl	Ar
	SODIUM	MAGNÉSIUM	3 B	4 IVB	5 VB	6 VIB	7 VIIB	8	9	10	11 IB	12 IIB	ALUMINIUM	SILICIUM	PHOSPHORE	SOUFRE	CHLORE	ARGON
	19 39.098	20 40.078	21 44.956	22 47.867	23 50.942	24 51.996	25 54.938	26 55.845	27 58.933	28 58.693	29 63.546	30 65.38	31 69.723	32 72.64	33 74.922	34 78.96	35 79.904	36 83.798
4	K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
	POTASSIUM	CALCIUM	SCANDIUM	TITANE	VANADIUM	CHROME	MANGANÈSE	FER	COBALT	NICKEL	CUIVRE	ZINC	GALLIUM	GERMANIUM	ARSENIC	SÉLÉNIUM	BROME	KRYPTON
	37 85.468	38 87.62	39 88.906	40 91.224	41 92.906	42 95.96	43 (98)	44 101.07	45 102.91	46 106.42	47 107.87	48 112.41	49 114.82	50 118.71	51 121.76	52 127.60	53 126.90	54 131.29
5	Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	Ι	Xe
	RUBIDIUM	STRONTIUM	YTTRIUM	ZIRCONIUM	NIOBIUM	MOLYBDÈNE	TECHNÉTIUM	RUTHÉNIUM	RHODIUM	PALLADIUM	ARGENT	CADMIUM	INDIUM	ETAIN	ANTIMOINE	TELLURE	IODE	XÉNON
	55 132.91	56 137.33	57-71	72 178.49	73 180.95	74 183.84	75 186.21	76 190.23	77 192.22	78 195.08	79 196.97	80 200.59	81 204.38	82 207.2	83 208.98	84 (209)	85 (210)	86 (222)
6	Cs	Ba	La-Lu	Hf	Та	W	Re	Os	Ir	Pt	Au	Hg	Tl	Pb	Bi	Po	At	Rn
	CÉSIUM	BARYUM	Lanthanides	HAFNIUM	TANTALE	TUNGSTÈNE	RHÉNIUM	OSMIUM		PLATINE	OR	MERCURE	THALLIUM	PLOMB	BISMUTH	POLONIUM	ASTATE	RADON
	87 (223)	88 (226)	89-103	104 (267)	105 (268)	106 (271)	107 (272)	108 (277)	109 (276)	110 (281)	111 (280)	112 (285)	113 ()	114 (287)	115 ()	116 (291)	117 ()	118 ()
7	Fr	Ra	Ac-Lr	Rſ	Db	Sg	Bh	IHS	Mt	Ds	Rg	Cm	Uut	Fl	Uup	Lv	Uus	Uuo
	FRANCIUM	RADIUM	Actinides	RUTHERFORDIUM	DUBNIUM	SEABORGIUM	BOHRIUM	HASSIUM	MEITNERIUM	DARMSTADTIUM	ROENTGENIUM	COPERNICIUM	UNUNTRIUM	FLEROVIUM	UNUNPENTIUM	LIVERMORIUM	UNUNSEPTIUM	UNUNOCTIUM

	LANTHANI	DES													
	57 138.91	58 140.12	59 140.91	60 144.24	61 (145)	62 150.36	63 151.96	64 157.25	65 158.93	66 162.50	67 164.93	68 167.26	69 168.93	70 173.05	71 174.97
Pure Appl. Chem., 81, No. 11, 2131-2156 (2009)															
La masse atomique relative est donnée avec	La	Ce	Pr	Nd	11Pmm	Sm	En	Gd	Th	Dv	Ho	Er	Tm	Vh	Lu
cinq chiffres significatifs. Pour les éléments	La	cc		114	11 1001	Sm	Lu	Gu	10	Dy	110	1.1	1 111	10	Lu
qui n'ont pas de nucléides stables, la valeur	LANTHANE	CÉRIUM	PRASÉODYME	NÉODYME	PROMÉTHIUM	SAMARIUM	EUROPIUM	GADOLINIUM	TERBIUM	DYSPROSIUM	HOLMIUM	ERBIUM	THULIUM	YTTERBIUM	LUTÉTIUM
entre parenthèses indique le nombre de masse	ACTINIDES														
de l'isotope de l'élément ayant la durée de vie la	00	00						[ac				100		100	100
plus grande. Toutefois, pour les trois éléments	89 (227)	90 232.04	91 231.04	92 238.03	93 (237)	94 (244)	95 (243)	96 (247)	97 (247)	98 (251)	99 (252)	100 (257)	101 (258)	102 (259)	103 (262)
(Th, Pa et U) qui ont une composition		T	D	TT	DT	TD	Δ	~		MP	100	100-00	LUA	DT-	Π
isotopique terrestre connue, une masse	AC	In	Pa	U	14ID	IPUI	ALTON	Cm	TRIK	CI	ILS		IVILOI	140	
atomique est indiquée.	ACTINIUM	THORIUM	PROTACTINIUM	URANIUM	NEPTUNIUM	PLUTONIUM	AMÉRICIUM	CURIUM	BERKÉLIUM	CALIFORNIUM	EINSTEINIUM	FERMIUM	MENDELÉVIUM	NOBÉLIUM	LAWRENCIUM

Copyright © 2012 Eni Generalić

T A STREET A STREET

Maille cubique faces centrées

2 atomes par maille (2cfc décalés)

$$N_v = 8$$

1) Pure Appl Chem 81 No 4 Bandes remplies: semi-La masse atomique rela cinq chiffres significatif qui n'ont pas de nucléi conducteur entre parenthèses indiqu de l'isotope de l'élément a plus grande. Toutefois, p (Th, Pa et U) qui o Gap: isotopique terrestre c atomique est indiquée. Diamant: 5.5eV Silicium:1.12eV

	TABLEAU PÉRIODIQUE DES ÉLÉMENTS 18 VIIA																	
	1 IA			DLC		ЈΓ	СЛ		ノレ	lUE	Ξ υ	EJ		. []		N I G)	18 VIIIA
ЭE	1 1.0079											_		http://w	ww.period	dni.com/fi	r/	2 4.0026
I III	Н			MASSE AT	OMIQUE REI	ATIVE (1)	Mé	taux 📕	Métalloïdes	Non-m	nétaux							He
ΡÉ	HYDROGÈNE	2 11A	GROU	PE IUPAC	G	ROUPE CAS	Mé	taux alcalins		Chalco	ogènes		13 IIIA	14 IVA	15 VA	16 VIA	17 VIIA	HÉLIUM
	3 6.941	4 9.0122	NOMBRE AT	OMIOUE			Mé	taux alcalino-	terreux	Haloge	ènes		5 10.811	6 12.011	7 14.007	8 15.999	9 18.998	10 20.180
2	Li	Be	53	MROLE	10.811 D		Mé	taux de transi	ition	Gaz no	obles	Ц.	B	С	Ν	0	F	Ne
	LITHIUM	BÉRYLLIUM	51	MBOLL	D			Actinides	ETAT	PHYSIQUE	(25 °C; 101 kl	Pa)	BORE	CARBONE	AZOTE	OXYGÈNE	FLUOR	NÉON
	11 22.990	12 24.305			BORE			Actinides	Ne Ha	- gaz - liquide	Fe - solide	tique	13 26.982	14 28.086	15 30.974	16 32.065	17 35.453	18 39.948
3	Na	Ma		NOM I	DE L'ÉLÉMEN	Т			1.9	iiquido	i o jinio	uquo	41	Si	D	S	CI	Ar
	INA	wig		1 11 (17)	-	< 100	-	0	VIIIB -	10			AI	51	1	3	CI	AI
	SODIUM	MAGNESIUM	3 1118	4 IVB	5 VB	6 VIB	7 VIIB	8	9	10		12 IIB	ALUMINIUM	SILICIUM	PHOSPHORE	SOUFRE	CHLORE	ARGON
	19 39.098	20 40.078	21 44.956	22 47.867	23 50.942	24 51.996	25 54.938	20 55.845	27 58.933	28 58.693	29 63.546	30 65.38	31 69.723	32 72.64	33 14.922	34 78.96	35 79.904	30 83.798
4	K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ca	Ce	Ac	So	Rr	Kr
			~ •			U 1	TATE	1.	CU	111	Cu		Ua	u	FID	Se	DI	IXI
	POTASSIUM	CALCIUM	SCANDIUM	TITANE	VANADIUM	CHROME	MANGANÈSE	FER	COBALT	NICKEL	CUIVRE	ZINC	GALLIUM	GERMANIUM	ARSENIC	SÉLÉNIUM	BROME	KRYPTON
	POTASSIUM 37 85.468	CALCIUM 38 87.62	SCANDIUM 39 88.906	TITANE 40 91.224	VANADIUM 41 92.906	CHROME 42 95.96	MANGANÈSE 43 (98)	FER 44 101.07	COBALT 45 102.91	NICKEL 46 106.42	CUIVRE 47 107.87	ZINC 48 112.41	GALLIUM 49 114.82	GERMANIUM 50 118.71	ARSENIC 51 121.76	SÉLÉNIUM 52 127.60	BROME 53 126.90	KRYPTON 54 131.29
5	ротаssium 37 85.468 Rb	CALCIUM 38 87.62 Sr	SCANDIUM 39 88.906 Y	titane 40 91.224 Zr	VANADIUM 41 92.906 Nb	снкоме 42 95.96 Мо	MANGANÈSE 43 (98) TC	FER 44 101.07 Ru	COBALT 45 102.91 Rh	NICKEL 46 106.42 Pd	CUIVRE 47 107.87 Ag	ZINC 48 112.41 Cd	GALLIUM 49 114.82 In	GERMANIUM 50 118.71 Sn	ARSENIC 51 121.76 Sb	SE SÉLÉNIUM 52 127.60 Te	BROME 53 126.90	ккуртол 54 131.29 Хе
5	POTASSIUM 37 85.468 Rb RUBIDIUM	CALCIUM 38 87.62 Sr STRONTIUM	SCANDIUM 39 88.906 Y YTTRIUM	titane 40 91.224 Zr zirconium	VANADIUM 41 92.906 Nb NIOBIUM	CHROME 42 95.96 MO MOLYBDÈNE	MANGANÈSE 43 (98) TC TECHNÉTIUM	FER 44 101.07 RU RUTHÉNIUM	COBALT 45 102.91 Rh RHODIUM	NICKEL 46 106.42 Pd PALLADIUM	CUIVRE 47 107.87 AGENT	ZINC 48 112.41 Cd CADMIUM	GALLIUM 49 114.82 In INDIUM	GERMANIUM 50 118.71 Sn ETAIN	ARSENIC 51 121.76 Sb ANTIMOINE	SE SÉLÉNIUM 52 127.60 TE TELLURE	BROME 53 126.90 I IODE	ккуртол 54 131.29 Хе хénon
5	РОТАSSIUM 37 85.468 Rb RUBIDIUM 55 132.91	CALCIUM 38 87.62 Sr STRONTIUM 56 137.33	SCANDIUM 39 88.906 Y YTTRIUM 57-71	titane 40 91.224 Zr zirconium 72 178.49	VANADIUM 41 92.906 Nb NIOBIUM 73 180.95	CHROME 42 95.96 MO MOLYBDÈNE 74 183.84	MANGANÈSE 43 (98) TC TC TECHNÉTIUM 75 186.21	FER 44 101.07 Ru RUTHÉNIUM 76 190.23	COBALT 45 102.91 Rh RHODIUM 77 192.22	NICKEL 46 106.42 Pd PALLADIUM 78 195.08	CUIVRE 47 107.87 Ag ARGENT 79 196.97	ZINC 48 112.41 Cd CADMIUM 80 200.59	GALLIUM 49 114.82 In INDIUM 81 204.38	GERMANIUM 50 118.71 Sn ETAIN 82 207.2	ARSENIC 51 121.76 Sb ANTIMOINE 83 208.98	SE SÉLÉNIUM 52 127.60 TE TELLURE 84 (209)	BROME 53 126.90 I IODE 85 (210)	KRYPTON 54 131.29 Xe xénon 86 (222)
5 6	37 85.468 Rb RUBIDIUM 55 132.91 CS	CALCIUM 38 87.62 ST STRONTIUM 56 137.33 Ba	SCANDIUM 39 88.906 Y YTTRIUM 57-71 La-Lu	TITANE 40 91.224 Zr zirconium 72 178.49 Hf	VANADIUM 41 92.906 Nb NIOBIUM 73 180.95 Ta	CHROME 42 95.96 MO MOLYBDÈNE 74 183.84 W	мандалёзе 43 (98) ПС тесниётиим 75 186.21 Re	FER 44 101.07 Ru RUTHÉNIUM 76 190.23 OS	COBALT 45 102.91 Rh RHODIUM 77 192.22 Ir	NICKEL 46 106.42 Pd PALLADIUM 78 195.08 Pt	CUIVRE 47 107.87 Ag ARGENT 79 196.97 Au	ZINC 48 112.41 Cd CADMIUM 80 200.59 Hg	GALLIUM 49 114.82 In INDIUM 81 204.38 TI	GERMANIUM 50 118.71 Sn ETAIN 82 207.2 Pb	ARSENIC 51 121.76 Sb ANTIMOINE 83 208.98 Bi	SC SÉLÉNIUM 52 127.60 TE TELLURE 84 (209) PO	BROME 53 126.90 I IODE 85 (210) At	KRYPTON 54 131.29 Xe xénon 86 (222) Rn
5	РОТАSSIUM 37 85.468 Rb RUBIDIUM 55 132.91 CS CÉSIUM	CALCIUM 38 87.62 ST STRONTIUM 56 137.33 Ba BARYUM	SCANDIUM 39 88.906 Y YTTRIUM 57-71 La-Lu Lanthanides	TITANE 40 91.224 Zr ZIRCONIUM 72 178.49 Hf HAFNIUM	VANADIUM 41 92.906 NB NIOBIUM 73 180.95 Ta TANTALE	CHROME 42 95.96 MOO MOLYBDÈNE 74 183.84 W TUNGSTÈNE	MANGANÈSE 43 (98) TC TECHNÉTIUM 75 186.21 Re RHÉNIUM	FER 44 101.07 RU RUTHÉNIUM 76 190.23 OS OSMIUM	COBALT 45 102.91 Rh RHODIUM 77 192.22 Ir IRIDIUM	NIGKEL 46 106.42 Pd PALLADIUM 78 195.08 Pt PLATINE	CUIVRE 47 107.87 Ag ARGENT 79 196.97 Au OR	ZINC 48 112.41 Cd CADMIUM 80 200.59 Hg MERCURE	GALLIUM 49 114.82 In INDIUM 81 204.38 Tl THALLIUM	GERMANIUM 50 118.71 Sn ETAIN 82 207.2 Pb PLOMB	ARSENIC 51 121.76 Sb ANTIMOINE 83 208.98 Bi BISMUTH	sélénium 52 127.60 Te Tellure 84 (209) PO POLONIUM	BROME 53 126.90 I IODE 85 (210) At ASTATE	KRYPTON 54 131.29 Xe Xénon 86 (222) Rn RADON
5	POTASSIUM 37 85.468 Rb RUBIDIUM 55 132.91 CS CÉSIUM 87 (223)	CALCIUM 38 87.62 ST STRONTIUM 56 137.33 Ba BARYUM 88 (226)	SCANDIUM 39 88.906 Y YTTRIUM 57-71 La-Lu Lanthanides 89-103	тітале 40 91.224 Zr Zirconium 72 178.49 Hff нағлішм 104 (267)	VANADIUM 41 92.906 NB NIOBIUM 73 180.95 Ta TANTALE 105 (268)	CHROME 42 95.96 MOOLYBDÈNE 74 183.84 W TUNGSTÈNE 106 (271)	MANGANÉSE 43 (98) TC TC TC 186.21 Re RHÉNIUM 107 (272)	FER 44 101.07 RU RUTHÉNIUM 76 190.23 OS SMIUM 108 (277)	COBALT 45 102.91 Rh RHODIUM 77 192.22 Ir IRIDIUM 109 (276)	NICKEL 46 106.42 Pd PALLADIUM 78 195.08 Pt PLATINE 110 (281)	CUIVRE 47 107.87 Ag ARGENT 79 196.97 AU OR 111 (280)	ZINC 48 112.41 Cd cadmium 80 200.59 Hg MERCURE 112 (285)	GALLIUM 49 114.82 In INDIUM 81 204.38 Tl THALLIUM 113 ()	GERMANIUM 50 118.71 Sn ETAIN 82 207.2 Pb PLOMB 114 (287)	ARSENIC 51 121.76 Sb ANTIMOINE 83 208.98 Bi BISMUTH 115 ()	SELÉNIUM 52 127.60 Te TELLURE 84 84 (209) PO POLONIUM 116	BROME 53 126.90 I IODE 85 (210) At ASTATE 117 ()	KRYPTON 54 131.29 Xe xénon 86 (222) Rn RADON 118 ()
5 6 7	POTASSIUM 37 85.468 Rb RUBIDIUM 55 132.91 CS CÉSIUM 87 (223) Fr	CALCIUM 38 87.62 ST 56 137.33 BA BARYUM 88 (226) Ra	SCANDIUM 39 88.906 Y YTTRIUM 57-71 La-Lu Lanthanide: 89-103 Ac-Lr	тітале 40 91.224 Zr Zirconium 72 178.49 Hf нағліим 104 (267) IRf [®]	VANADIUM 41 92.906 Nb NIOBIUM 73 180.95 Ta TaNTALE 105 (268) Db	CHROME 42 95.96 MO MOLYBDÈNE 74 183.84 W TUNGSTÈNE 106 (271)	мандале́зе 43 (98) ПС тесние́тиим 75 186.21 Re пот (272) ВПа	FER 44 101.07 RU RUTHÉNIUM 76 190.23 OS OSMIUM 108 (277) HIS	COBALT 45 102.91 Rh RHODIUM 77 192.22 Ir IRIDIUM 109 (276) MIt	NICKEL 46 106.42 Pd PALLADIUM 78 195.08 Pt PLATINE 110 (281) DS	CUIVRE 47 107.87 Ag ARGENT 79 196.97 Au OR 111 (280) RC	ZINC 48 112.41 Cd CADMIUM 80 200.59 Hg MERCURE 112 (285) Cm	GALLIUM 49 114.82 In INDIUM 81 204.38 Tl THALLIUM 113 () UUII	GERMANIUM 50 118.71 Sn етаім 82 207.2 Pb PLOMB 114 (287)	ARSENIC 51 121.76 Sb ANTIMOINE 83 208.98 Bi BISMUTH 115 () UUID	SC SELÉNIUM 52 127.60 Te 127.60 Te 84 (209) PO POLONIUM 116 (291) LTY	BROME 53 126.90 I IODE 85 (210) At ASTATE 117 () UUS	ккуртон 54 131.29 Хе хёмон 86 (222) Rn Radon 118 () UUD
5 6 7	POTASSIUM 37 85.468 Rb RUBIDIUM 55 132.91 CS CÉSIUM 87 (223) Fr FRANCIUM	CALCIUM 38 87.62 ST STRONTIUM 56 137.33 BARYUM 88 (226) Ra RADIUM	SCANDIUM 39 88.906 Y YTTRIUM 57-71 La-Lu Lanthanides 89-103 Ac-Lr Actinides	ТІТАЛЕ 40 91.224 Zr ZIRCONIUM 72 178.49 НАГ НАГЛІИМ 104 (267) IRIP RUTHERFORDIUM	VANADIUM 41 92.906 Nb NIOBIUM 73 180.95 Ta TANTALE 105 (268) DDD DUBNIUM	CHROME 42 95.96 MO MOLYBDÈNE 74 183.84 W TUNGSTÈNE 106 (271) S C SEABORGIUM	MANGANÈSE 43 (98) TCC TECHNÉTIUM 75 186.21 Re RHÉNIUM 107 (272) BLA BOHRIUM	FER 44 101.07 RU RUTHÉNIUM 76 190.23 OS OS OS 0S 0S 0S 0S 0S 0S 0S 0S 0S 0	COBALT 45 102.91 Rh RHODIUM 77 192.22 Ir IRIDIUM 109 (276) MIC MEITNERIUM	NICKEL 46 106.42 Pd PALLADIUM 78 195.08 Pt PLATINE 110 (281) DS DARMSTADTIUM	CUIVRE 47 107.87 Ag ARGENT 79 196.97 AU OR 111 (280) ROS ROSNIGENIUM	ZINC 48 112.41 Cd CADMIUM 80 200.59 Hg MERCURE 112 (285) Cm COPERNICIUM	GALLIUM 49 114.82 In INDIUM 81 204.38 TI THALLIUM 113 () UUIT	GERMANIUM 50 118.71 ETAIN 82 207.2 Pb PLOMB 114 (287) FT FLEROVIUM	ARSENIC 51 121.76 Sb ANTIMOINE 83 208.98 Bi BISMUTH 115 () UUID UNUNPENTIUM	SC SELENIUM 52 127.60 TELLURE 84 (209) POLONIUM 116 (291) LVERMORIUM LLVERMORIUM	BROME 53 126.90 I 10DE 85 (210) At ASTATE 117 () UUUS UNUNSEPTIUM	ккуртом 54 131.29 Хе хёлол 86 (222) Rn кадол 118 () UUU© инилостим

	LANIHANI	DES														
. 11. 2131-2156 (2009)	57 138.91	58 140.12	59 140.91	60 144.24	61 (145)	62 150.36	63 151.96	64 157.25	65 158.93	66 162.50	67 164.93	68 167.26	69 168.93	70 173.05	71 174.97	
tive est donnée avec s. Pour les éléments	La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu	
des stables, la valeur e le nombre de masse	ACTINIDES	CÉRIUM	PRASÉODYME	NÉODYME	PROMÉTHIUM	SAMARIUM	EUROPIUM	GADOLINIUM	TERBIUM	DYSPROSIUM	HOLMIUM	ERBIUM	THULIUM	YTTERBIUM	LUTÉTIUM	
yant la durée de vie la our les trois éléments	89 (227)	90 232.04	91 231.04	92 238.03	93 (237)	94 (244)	95 (243)	96 (247)	97 (247)	98 (251)	99 (252)	100 (257)	101 (258)	102 (259)	103 (262)	
nt une composition connue, une masse	Ac	Th	Pa	U	$\mathbb{N}\mathbb{P}$	Pu	Am	Cm	Bk	Cíf	Es	Fm	Md	NO	Lr	
	ACTINIUM	THORIUM	PROTACTINIUM	URANIUM	NEPTUNIUM	PLUTONIUM	AMÉRICIUM	CURIUM	BERKÉLIUM	CALIFORNIUM	EINSTEINIUM	FERMIUM	MENDELÉVIUM	NOBÉLIUM	LAWRENCIUM	

Germanium:0.67eV

Semi-conducteurs III-V: GaAs, InAs

Semi-conducteurs II-VI: CdTe, ZnTe, HgTe

Maille cubique faces centrées 2 atomes par maille (2cfc décalés)

$$N_v = 3 + 5 = 8$$

4 Bandes remplies: semiconducteurs

	1 10			51 F		JP	FK	IUI	Л.	ハル	- 1)	F 3			/			10 1/11/4
7	1 1.0079													http://w	ww.period	dni.com/fi	-/	2 4.0026
1	H			MASSE AT	OMIQUE REI	ATIVE (1)	Mé	taux	Métalloïdes	Non-m	létaux							He
-	HYDROGÈNE	2 IIA	GROU	JPE IUPAC	G	ROUPE CAS	Mé	taux alcalins		Chalco	ogènes		13 IIIA	14 IVA	15 VA	16 VIA	17 VIIA	HÉLIUM
	3 6.941	4 9.0122	NOMBRE AT	OMIQUE	3 IIIA		Mé	taux alcalino-	terreux	Haloge	ènes		5 10.811	6 12.011	7 14.007	8 15.999	9 18.998	10 20.180
2	Li	Be	cv		10.811 D		Mé	taux de transi	ition	Gaz no	obles	Ц.	B	C	N	0	F	Ne
	LITHIUM	BÉRYLLIUM	51	MDOLL	D			Actinideo	ETAT	PHYSIQUE	(25 °C; 101 k	Pa)	BORE	CARBONE	AZOTE	OXYGÈNE	FLUOR	NÉON
	11 22.990	12 24.305			BORE			Actinides	Ne	- gaz	Fe - solide	tique	13 26.982	14 28.086	15 30.974	16 32.065	17 35.453	18 39.948
3	No	Ma		NOM I	DE L'ÉLÉMEN	Т			ng	ilquide	i Synaic	uque	41	C:	D	C	CI	A
	Iva	Ing	1.22						VIIIB -				AI	51	I	0	U	AI
	SODIUM	MAGNÉSIUM	3 B	4 IVB	5 VB	6 VIB	7 VIIB	8	9	10	11 B	12 IIB	ALUMINIUM	SILICIUM	PHOSPHORE	SOUFRE	CHLORE	ARGON
	19 39.098	20 40.078	21 44.956	22 47.867	23 50.942	24 51.996	25 54.938	26 55.845	27 58.933	28 58.693	29 63.546	30 65.38	31 69.723	32 72.64	33 74.922	34 78.96	35 79.904	36 83.798
4	K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
	POTASSIUM								CODALT	NUMBER OF STREET, STRE				and the second second				
		CALCIUM	SCANDIUM	TITANE	VANADIUM	CHROME	MANGANESE	FER	COBALI	NICKEL	CUIVRE	ZINC	GALLIUM	GERMANIUM	ARSENIC	SÉLÉNIUM	BROME	KRYPTON
	37 85.468	38 87.62	39 88.906	40 91.224	41 92.906	42 95.96	43 (98)	FER 44 101.07	45 102.91	46 106.42	47 107.87	48 112.41	49 114.82	50 118.71	ARSENIC 51 121.76	SÉLÉNIUM 52 127.60	BROME 53 126.90	KRYPTON 54 131.29
5	37 85.468 Rb	38 87.62 Sr	39 88.906 Y	40 91.224 Zr	41 92.906 Nb	42 95.96 MO	43 (98)	FER 44 101.07 Ru	45 102.91 Rh	46 106.42 Pd	47 107.87	48 112.41 Cd	49 114.82 In	50 118.71 Sn	ARSENIC 51 121.76 Sb	sélénium 52 127.60 Te	вкоме 53 126.90 I	ккуртон 54 131.29 Хе
5	37 85.468 Rb RUBIDIUM	38 87.62 Sr strontium	39 88.906 Y YTTRIUM	40 91.224 Zr Zirconium	41 92.906 Nb	42 95.96 MO MOLYBDÈNE	43 (98) TC TECHNÉTIUM	FER 44 101.07 RU RUTHÉNIUM	45 102.91 Rh RHODIUM	46 106.42 Pd PALLADIUM	47 107.87 Ag ARGENT	48 112.41 Cd	49 114.82	50 118.71 Sn ETAIN	ARSENIC 51 121.76 Sb ANTIMOINE	SÉLÉNIUM 52 127.60 Te TELLURE	BROME 53 126.90 I IODE	ккуртол 54 131.29 Хе хénon
5	37 85.468 Rb RUBIDIUM 55 132.91	CALCIUM 38 87.62 Sr STRONTIUM 56 137.33	39 88.906 Y YTTRIUM 57-71	40 91.224 Zr Zirconium 72 178.49	VANADIUM 41 92.906 Nb NIOBIUM 73 180.95	CHROME 42 95.96 MO MOLYBDÈNE 74 183.84	MANGANÈSE 43 (98) TC <u>TECHNÉTIUM</u> 75 186.21	FER 44 101.07 Ru RUTHÉNIUM 76 190.23	45 102.91 Rh RHODIUM 77 192.22	NICKEL 46 106.42 Pd PALLADIUM 78 195.08	47 107.87 47 Ag Argent 79 196.97	21NC 48 112.41 Cd CADMIUM 80 200.59	49 114.82 In INDIUM 81 204.38	50 118.71 51 118.71 ETAIN 82 207.2	ARSENIC 51 121.76 Sb ANTIMOINE 83 208.98	SÉLÉNIUM 52 127.60 TE TELLURE 84 (209)	BROME 53 126.90 I IODE 85 (210)	KRYPTON 54 131.29 XE XÉNON 86 (222)
5	37 85.468 Rb RUBIDIUM 55 132.91 CS	38 87.62 Sr STRONTIUM 56 137.33 Ba	39 88.906 Y YTTRIUM 57-71 La-Lu	117ANE 40 91.224 Zr ZIRCONIUM 72 178.49 Hf	VANADIUM 41 92.906 ND NIOBIUM 73 180.95 Ta	CHROME 42 95.96 MO MOLYBDÈNE 74 183.84 W	MANGANESE 43 (98) TC TC TECHNÉTIUM 75 75 186.21 Re	FER 44 101.07 RU RUTHÉNIUM 76 190.23 OS	45 102.91 Rh RHODIUM 77 192.22 Ir	NICKEL 46 106.42 Pd PALLADIUM 78 195.08 Pt	47 107.87 Ag Argent 79 196.97 Au	2INC 48 112.41 Cd CADMIUM 80 200.59	49 114.82 In INDIUM 81 204.38	50 118.71 50 118.71 ETAIN 82 207.2 Pb	ARSENIC 51 121.76 Sb ANTIMOINE 83 208.98 Bi	52 127.60 Te Tellure 84 (209) Po	BROME 53 126.90 I IODE 85 (210) At	KRYPTON 54 131.29 Xe xénon 86 (222) Rn
5 6	37 85.468 Rb RUBIDIUM 55 132.91 CS CÉSIUM	CALCIUM 38 87.62 Sr STRONTIUM 56 137.33 Ba BARYUM	39 88.906 Y YTTRIUM 57-71 La-Lu Lanthanides	тітане 40 91.224 Zr zirconium 72 178.49 Hf наfnium	VANADIUM 41 92.906 Nb NIOBIUM 73 180.95 Ta TANTALE	CHROME 42 95.96 MO MOLYBDÈNE 74 183.84 W TUNGSTÈNE	манданезе 43 (98) ТС тесниетии 75 186.21 Re внелии	FER 44 101.07 Ru RUTHÉNIUM 76 190.23 OS OSMIUM	45 102.91 Rh RHODIUM 77 192.22 Ir IRIDIUM	NICKEL 46 106.42 Pd PALLADIUM 78 195.08 Pt PLATINE	CUIVRE 47 107.87 Ag ARGENT 79 196.97 Au OR	ZINC 48 112.41 Cd CADMIUM 80 200.59 Hg MERCURE	49 114.82 In INDIUM 81 204.38 TI THALLIUM	СЕКМАЛІОМ 50 118.71 Sn етаім 82 207.2 Pb PLOMB	ARSENIC 51 121.76 Sb ANTIMOINE 83 208.98 Bi BISMUTH	SÉLÉNIUM 52 127.60 Te TELLURE 84 (209) POLONIUM	BROME 53 126.90 I IODE 85 (210) At ASTATE	KRYPTON 54 131.29 Xe xénon 86 (222) Rn RADON
5 6	37 85.468 Rb RUBIDIUM 55 132.91 CS CÉSIUM 87 (223)	CALCIUM 38 87.62 ST STRONTIUM 56 137.33 Ba BARYUM 88 (226)	SCANDIUM 39 88.906 Y YTTRIUM 57-71 La-Lu Lanthanides 89-103	тітане 40 91.224 Zr 2ігсоліцм 72 178.49 Нf наfnium 104 (267)	VANADIUM 41 92.906 ND NIOBIUM 73 180.95 Ta TANTALE 105 (268)	CHROME 42 95.96 MOLYBDÈNE 74 183.84 W TUNGSTÈNE 106 (271)	MANGANESE 43 (98) TC TECHNÉTIUM 75 186.21 RE RHÉNIUM 107 (272)	FER 44 101.07 Ru RUTHÉNIUM 76 190.23 OS SMIUM 108 (277)	45 102.91 Rh RHODIUM 77 192.22 Ir IRIDIUM 109 (276)	NICKEL 46 106.42 Pd PALLADIUM 78 195.08 Pt PLATINE 110 (281)	CUIVRE 47 107.87 Ag ARGENT 79 196.97 Au OR 111 (280)	2INC 48 112.41 Cd CADMIUM 80 200.59 Hg MERCURE 112 (285)	49 114.82 In INDIUM 81 204.38 Tl THALLIUM 113 ()	50 118.71 Sn ETAIN 82 207.2 Pb PLOMB 114 (287)	ARSENIC 51 121.76 Sb ANTIMOINE 83 208.98 Bi BISMUTH 115 ()	SELENIUM 52 127.60 Te TELLURE 84 (209) PO POLONIUM 116 (291)	BROME 53 126.90 I IODE 85 (210) At ASTATE 117 ()	KRYPTON 54 131.29 XE XÉNON 86 (222) Rn RADON 118 ()
5 6 7	37 85.468 Rb RUBIDIUM 55 132.91 CS CÉSIUM 87 (223) Fr	CALCIUM 38 87.62 STRONTIUM 56 137.33 BA BARYUM 88 (226) Ra	SCANDIUM 39 88.906 Y YTTRIUM 57-71 La-Lu Lanthanides 89-103 Ac-Lr	тітане 40 91.224 Zr Zirconium 72 178.49 Hf нағліим 104 (267) IRf	VANADIUM 41 92.906 Nb NIOBIUM 73 180.95 Ta Tantale 105 (268) DD	CHROME 42 95.96 MOUYBDÈNE 74 183.84 W TUNGSTÈNE 106 (271) SOL	манданезе 43 (98) ПС тесниётиим 75 186.21 Re Rhénium 107 (272) IBIh	FER 44 101.07 RUTHÉNIUM 76 190.23 OS OSMIUM 108 (277) ⅢS	45 102.91 Rh RHODIUM 77 192.22 Ir IRIDIUM 109 (276) MI(t	NICKEL 46 106.42 Pd PALLADIUM 78 195.08 Pt PLATINE 110 (281) IDS	CUIVRE 47 107.87 Agg ARGENT 79 196.97 Au OR 111 (280) RO	21NC 48 112.41 Cd CADMIUM 80 200.59 Hg MERCURE 112 (285)	49 114.82 In INDIUM 81 204.38 Tl THALLIUM 113 () UTL	50 118.71 Sn етаім 82 207.2 РЬ РLОМВ 114 (287)	ARSENIC 51 121.76 Sb ANTIMOINE 83 208.98 Bi BISMUTH 115 () UUIID	SELENIUM 52 127.60 Te 127.60 Te 127.60 POLONIUM 116 116 (291)	BROME 53 126.90 I IODE 85 (210) At ASTATE 117 () UUS	KRYPTON 54 131.29 Xe xénon 86 (222) Rn RADON 118 () UUDO
5 6 7	37 85.468 Rb RUBIDIUM 55 132.91 CS CÉSIUM 87 (223) Fr FRANCIUM	CALCIUM 38 87.62 ST STRONTIUM 56 137.33 BA BARYUM 88 (226) RA RADIUM	SCANDIUM 39 88.906 Y YTTRIUM 57-71 La-Lu Lanthanides 89-103 Ac-Lr Actinides	ТІТАНЕ 40 91.224 Zr ZIRCONIUM 72 178.49 Нf НАЕ́NIUM 104 (267) IRIÉ RUTHERFORDIUM	VANADIUM 41 92.906 Nb NIOBIUM 73 180.95 Ta TANTALE 105 (268) DDD DUBNIUM	CHROME 42 95.96 MOLYBDÈNE 74 183.84 W TUNGSTÈNE 106 (271)	манданезе 43 (98) ТС тесниётиим 75 186.21 Re RHENIUM 107 (272) ВПа воняцим	FER 44 101.07 RUTHÉNIUM 76 190.23 OS OSMIUM 108 (277) IIIS HASSIUM	45 102.91 Rh RHODIUM 77 192.22 Ir IRIDIUM 109 (276) MIt METNERIUM	NICKEL 46 106.42 Pd PALLADIUM 78 195.08 Pt PLATINE 110 (281) DS DARMSTADTIUM	CUIVRE 47 107.87 Agg ARGENT 79 196.97 Au OR 111 (280) RGC ROCENTGENUM	21NC 48 112.41 Cd CADMIUM 80 200.59 Hg MERCURE 112 (285) CIM	49 114.82 In INDIUM 81 204.38 TI THALLIUM 113 () UUIC	50 118.71 50 118.71 Sn ETAIN 82 207.2 Pb PLOMB 114 (287) FILEROVIUM	ARSENIC 51 121.76 Sb ANTIMOINE 83 208.98 Bi BISMUTH 115 () UUIDP UNUNPENTIUM	SELENIUM 52 127.60 Te TELLURE 84 84 (209) PO POLONIUM 116 116 (291) LIVERMORIUM	BROME 53 126.90 I IODE 85 (210) At ASTATE 117 () UUIS UNUNSEPTIUM	KRYPTON 54 131.29 Xe xénon 86 (222) Rn RADON 118 () UUIO

																	С	opyright © 2012	2 Eni Generalić
	LAN	THAN	DES																
	57	138.91	58	140.12	59 1	140.91	60 144.24	61 (145)	62 150.	.36	63 151.96	64 157.25	65 158.93	66 162.50	67 164.93	68 167.26	69 168.93	70 173.05	71 174.97
(1) Pure Appl. Chem., 81, No. 11, 2131-2156 (2009)																			
La masse atomique relative est donnée avec		a	(e	P	r	Nd	1Pmm	Sm		En	Gd	Th	Dv	Ho	Er	Tm	Yh	Lu
cinq chiffres significatifs. Pour les éléments	1			~	-	-	1104	21 1000		•		Gu		25				-~	
qui n'ont pas de nucléides stables, la valeur	LAN	THANE	CÉ	RIUM	PRASÉ	ODYME	NÉODYME	PROMÉTHIUM	SAMARI	UM L	EUROPIUM	GADOLINIUM	TERBIUM	DYSPROSIUM	HOLMIUM	ERBIUM	THULIUM	YTTERBIUM	LUTÉTIUM
entre parenthèses indique le nombre de masse	ACT	INIDES							<u> </u>										
de l'isotope de l'élément ayant la durée de vie la	00	in the base	00		0.4				0.1			04				100			(100
plus grande. Toutefois, pour les trois éléments	89	(227)	90	232.04	91 2	231.04	92 238.03	93 (237)	94 (2	44)	95 (243)	96 (247)	97 (247)	98 (251)	99 (252)	100 (257)	101 (258)	102 (259)	103 (262)
(Th, Pa et U) qui ont une composition			-		D		TT	DT	TD		^	~	TIOT	a c	103	115	DOD	DT	TT
isotopique terrestre connue, une masse	1	AC		h	P	'a	U	INTD	Pu		A\m	Cm	IBIK	CI	LES	Tk.IW	INITOT	NO I	
atomique est indiquée.			-		PROTI			L	DUITON			01101111	DEDICT: UNIT		ENIOTENIUM	FEDRUM		NODÉLUNI	
	AC	TINIUM	LIH	DRIUM	PRUTAL	CTINIUM	URANIUM	NEPTUNIUM	PLUTONI	UM	AMERICIUM	CURIUM	BERKELIUM	CALIFORNIUM	EINSTEINIUM	FERMIUM	MENDELEVIUM	NOBELIUM	LAWRENCIUM

qui n'ont pas de nuclé entre parenthèses indiqu de l'isotope de l'élément plus grande. Toutefois, (Th, Pa et U) qui isotopique terrestre atomique est indiquée.

GROUPE

LPENS Exemple de Ca, metal à deux électrons de valence

t: couplage entre atomes voisins (intégrale de transfert)
t ∧ augmente quand la distance entre atomes diminue

 E_{F1} : énergie de Fermi pour un atome monovalent E_{F2} : énergie de Fermi pour un atome divalent

Recouvrement de bandes pour couplage fort entre sites

 E_{F_1} : 1 e de valence, exemple Potassium, on a toujours un métal

 E_{F_2} : 2 e de valence, metal ou isolant en fonction du recouvrement (Ca est un metal)

Elements de Physique des solides: Cours 2: diamagnétisme, paramagnétisme, ferromagnétisme

Gwendal Fève

Absence de magnétisme classique

Particule i de charge —e dans un champ magnétique \vec{B} , $\vec{A}(\vec{r})$ potentiel vecteur

$$H_i = \frac{\left(\vec{p}_i + e\vec{A}(\vec{r}_i)\right)^2}{2m}$$

Fonction de partition:
$$\mathbf{Z}\left(\vec{B}\right) = \prod_{i} \int \frac{d^{3}\vec{p}_{i}d^{3}r_{i}}{h^{3}} e^{-\frac{\beta\left(\vec{p}_{i}+e\vec{A}\left(\vec{r}_{i}\right)\right)^{2}}{2m}} = \prod_{i} \int \frac{d^{3}\vec{p}_{i}d^{3}r_{i}}{h^{3}} e^{-\frac{\beta\left(\vec{p}_{i}+e\vec{A}\left(\vec{r}_{i}\right)\right)^{2}}{2m}} = \mathbf{Z}\left(\vec{B}=\vec{0}\right)$$

Energie libre:
$$\mathbf{F} = -k_B T \ln[Z]$$
, $\mathbf{F}\left(\vec{B}\right) = \mathbf{F}\left(\vec{B} = \vec{0}\right)$

Aimantation:
$$M_i = -\frac{\partial f}{\partial B_i} = 0$$
, $f = \frac{F}{V}$ densité d'énergie libre \rightarrow susceptibilité, $\chi = 0$

La thermodynamique classique ne prévoit pas de magnétisme à l'équilibre (théorème de Bohr-van Leeuwen)

Il est nécessaire de développer une approche quantique

Magnétisme des atomes

Electron de charge —e dans un champ magnétique $\vec{B} = B\vec{e}_z$, $\vec{A}(\vec{r}) = \frac{B}{2}\left[-y\vec{e}_x + x\vec{e}_y\right]$ (On ne prend pas en compte le spin pour l'instant).

$$H = \frac{\left(\vec{p} + e\vec{A}(\vec{r})\right)^2}{2m} = \frac{\vec{p}^2}{2m} + \frac{e}{m}\vec{A}.\vec{p} + \frac{B^2e^2}{8m}(x^2 + y^2)$$

$$H = \frac{\vec{p}^2}{2m} + \frac{e}{2m}(\vec{r} \times \vec{p}).\vec{B} + \frac{B^2 e^2}{8m}(x^2 + y^2) = \frac{\vec{p}^2}{2m} + \frac{e\hbar}{2m}\vec{L}.\vec{B} + \frac{B^2 e^2}{8m}(x^2 + y^2)$$

$$paramagnétisme diamagnétisme$$

Ordre de grandeur du terme diamagnétique:

$$\chi \approx -n\mu_0 \frac{e^2 a_0^2}{m} \sim -\alpha^2 n a_0^3 \sim -10^{-5}$$

Constante de structure fine

Magnétisme des atomes

On laisse maintenant de côté le terme diamagnétique, ajout du spin \vec{S} et du terme zeeman $H_Z = 2 \frac{e\hbar}{2m} \vec{S} \cdot \vec{B}$

$$H = \frac{\vec{p}^2}{2m} + \mu_B \left(\vec{L} + 2\vec{S} \right) \cdot \vec{B}, \quad \text{avec } \mu_B = \frac{e\hbar}{2m}$$

 $\mu_B = 9,27 \times 10^{-24} A.\,m^2$

Note théorème de Wigner Eckart (cf Cohen par exemple):

base des états atomiques $|J, L, S, m_J\rangle$ avec $\vec{J} = \vec{L} + \vec{S}$, moment cinétique total dans le sous-espace de J, L, S fixés, on a $\vec{L} + 2\vec{S} = g_J \vec{J}$ avec $g_J = \frac{3}{2} + \frac{S(S+1) - L(L+1)}{2J(J+1)}$ où g_J est le facteur de Landé

Moment magnétique: $ec{\mu}=-g_J\mu_Bec{J}$

Moment magnétique non nul pour couches atomiques partiellement remplies (atomes isolés)

Démonstration (on admet le théorème de Wigner Eckart), dans le sous espace de J, L, S fixés:

$$\left(\vec{L}+2\vec{S}\right).\vec{J} = g_J\vec{J}^2 = g_JJ(J+1) = \vec{L}^2 + 3\vec{L}.\vec{S} + 2\vec{S}^2$$

$$g_JJ(J+1) = L(L+1) + \frac{3}{2}\left[\left(\vec{L}+\vec{S}\right)^2 - \vec{L}^2 - \vec{S}^2\right] + 2S(S+1) \quad \Longrightarrow \quad g_J = \frac{3}{2} + \frac{S(S+1) - L(L+1)}{2J(J+1)}$$

Paramagnétisme de Curie

Solides comportant des ions aux couches atomiques incomplètes: moment magnétique: $\vec{\mu} = -g_J \mu_B \vec{J} \neq \vec{0}$

 $H = -\vec{\mu}.\vec{B} = g_J \mu_B J_z B \qquad 2J + 1 \text{ valeurs de } m_J, \text{ valeur propre de } J_z$

N atomes indépendants, fonction de partition $Z = z^N$

 $\mu_R R$

Cas du spin $\frac{1}{2}$, J = 1/2

$$M_{1/2} = \frac{ng_J\mu_B}{2} tanh\left(\frac{g_J\mu_B B}{2k_B T}\right) \qquad \qquad \frac{\mu_B B}{k_B T} \ll 1 \qquad M_{1/2} \approx n\mu_B^2 \frac{1}{k_B T} \qquad \text{Loi de Curie}$$

$$\frac{\mu_B B}{k_B T} \gg 1 \qquad M_{1/2} \approx n\mu_B \qquad \qquad \text{Aimantation}$$

$$\frac{\lambda_B B}{\lambda_B T} \approx 1 \qquad M_{1/2} \approx n\mu_B \qquad \qquad \text{Aimantation}$$

B

Paramagnétisme de Curie

Pour J quelconque,
$$M_J = ng_J \mu_B J B_J \left(\frac{g_J \mu_B J B}{k_B T}\right)$$

avec $B_J(x) = \frac{2J+1}{2J} coth \left(\frac{2J+1}{2J}x\right) - \frac{1}{2J} coth \left(\frac{x}{2J}\right)$

Fonction de Brillouin (≠ calcul classique Langevin)

$$\frac{g_J \mu_B J B}{k_B T} \ll 1 \rightarrow M_J = n (g_J \mu_B)^2 \frac{J(J+1)}{3} \frac{B}{k_B T}$$

$$\frac{g_J \mu_B J B}{k_B T} \gg 1 \rightarrow M_J = n g_J \mu_B J = n \mu$$

7.00
6.00
(io) He LyOg By Subjudge Line 1,00

$$1,00$$

 $1,00$
 $1,00$
 $1,00$
 $1,00$
 $1,00$
 $1,00$
 $1,00$
 $1,00$
 $1,00$
 $1,00$
 $1,00$
 $1,00$
 $1,00$
 $1,00$
 $1,00$
 $1,00$
 $1,00$
 $1,00$
 $1,00$
 $1,00$
 $1,00$
 $1,00$
 $1,00$
 $1,00$
 $1,00$
 $1,00$
 $1,00$
 $1,00$
 $1,00$
 $1,00$
 $1,00$
 $1,00$
 $1,00$
 $1,00$
 $1,00$
 $1,00$
 $1,00$
 $1,00$
 $1,00$
 $1,00$
 $1,00$
 $1,00$
 $1,00$
 $1,00$
 $1,00$
 $1,00$
 $1,00$
 $1,00$
 $1,00$
 $1,00$
 $1,00$
 $1,00$
 $1,00$
 $1,00$
 $1,00$
 $1,00$
 $1,00$
 $1,00$
 $1,00$
 $1,00$
 $1,00$
 $1,00$
 $1,00$
 $1,00$
 $1,00$
 $1,00$
 $1,00$
 $1,00$
 $1,00$
 $1,00$
 $1,00$
 $1,00$
 $1,00$
 $1,00$
 $1,00$
 $1,00$
 $1,00$
 $1,00$
 $1,00$
 $1,00$
 $1,00$
 $1,00$
 $1,00$
 $1,00$
 $1,00$
 $1,00$
 $1,00$
 $1,00$
 $1,00$
 $1,00$
 $1,00$
 $1,00$
 $1,00$
 $1,00$
 $1,00$
 $1,00$
 $1,00$
 $1,00$
 $1,00$
 $1,00$
 $1,00$
 $1,00$
 $1,00$
 $1,00$
 $1,00$
 $1,00$
 $1,00$
 $1,00$
 $1,00$
 $1,00$
 $1,00$
 $1,00$
 $1,00$
 $1,00$
 $1,00$
 $1,00$
 $1,00$
 $1,00$
 $1,00$
 $1,00$
 $1,00$
 $1,00$
 $1,00$
 $1,00$
 $1,00$
 $1,00$
 $1,00$
 $1,00$
 $1,00$
 $1,00$
 $1,00$
 $1,00$
 $1,00$
 $1,00$
 $1,00$
 $1,00$
 $1,00$
 $1,00$
 $1,00$
 $1,00$
 $1,00$
 $1,00$
 $1,00$
 $1,00$
 $1,00$
 $1,00$
 $1,00$
 $1,00$
 $1,00$
 $1,00$
 $1,00$
 $1,00$
 $1,00$
 $1,00$
 $1,00$
 $1,00$
 $1,00$
 $1,00$
 $1,00$
 $1,00$
 $1,00$
 $1,00$
 $1,00$
 $1,00$
 $1,00$
 $1,00$
 $1,00$
 $1,00$
 $1,00$
 $1,00$
 $1,00$
 $1,00$
 $1,00$
 $1,00$
 $1,00$
 $1,00$
 $1,00$
 $1,00$
 $1,00$
 $1,00$
 $1,00$
 $1,00$
 $1,00$
 $1,00$
 $1,00$
 $1,00$
 $1,00$
 $1,00$
 $1,00$
 $1,00$
 $1,00$
 $1,00$
 $1,00$
 $1,00$
 $1,00$
 $1,00$
 $1,00$
 $1,00$
 $1,00$
 $1,00$
 $1,00$
 $1,00$
 $1,00$
 $1,00$
 $1,00$
 $1,00$
 $1,00$
 $1,00$
 $1,00$
 $1,00$
 $1,00$
 $1,00$
 $1,00$
 $1,00$
 $1,00$
 $1,00$
 $1,00$
 $1,00$
 $1,00$
 $1,00$
 $1,00$
 $1,00$
 $1,00$
 $1,00$
 $1,00$
 $1,00$
 $1,00$
 $1,00$
 $1,00$
 $1,00$
 $1,00$
 $1,00$
 $1,00$
 $1,00$
 $1,00$
 $1,00$
 $1,00$
 $1,00$
 $1,00$
 $1,00$
 $1,00$
 $1,00$
 $1,00$
 $1,00$
 $1,00$
 $1,00$
 $1,00$
 $1,00$
 $1,00$

(cf Alloul)

Courbes du moment magnétique en fonction de B/T pour des échantillons sphériques d'alun de chrome et de potassium (I), d'alun de fer ammoniacal (II), et d'octahydrate de sulfate de gaolinium (III). La saturation magnétique est atteinte à 0.5% près, à 1.3K et pour 5T environ.

Ex: solides ioniques/ sels à base de métaux de transition ou de terres rares

 $(a \cup ID)$

Paramagnétisme de Curie

Pour J quelconque,
$$M_J = ng_J\mu_B J B_J \left(\frac{g_J\mu_B J B}{k_B T}\right)$$

avec
$$B_J(x) = \frac{2J+1}{2J} coth\left(\frac{2J+1}{2J}x\right) - \frac{1}{2J} coth\left(\frac{x}{2J}\right)$$

Fonction de Brillouin (≠ calcul classique Langevin)

$$\frac{g_J \mu_B J B}{k_B T} \ll 1 \rightarrow M_J = n (g_J \mu_B)^2 \frac{J(J+1)}{3} \frac{B}{k_B T}$$

$$\frac{g_J \mu_B J B}{k_B T} \gg 1 \rightarrow M_J = n g_J \mu_B J = n \mu$$

Exemple, $J = S = \frac{N}{2} \rightarrow g_J = 2$, $\mu = N\mu_B$

$$1/\chi_{W}$$
 e untitibles de 10² mol/cm²,

(cf Alloul)

LOI DE CURIE

Température (°K)

Ex: solides ioniques/ sels à base de métaux de transition ou de terres rares

Paramagnétisme de Pauli (métaux) Surface de Fermi des métaux

Alcalins: très proches des électrons libres

RR: réseau cubique faces centrées

Métaux nobles: proches des électrons libres sauf au voisinage des plans de Bragg $(\vec{k}.\frac{\vec{K}}{K}=\frac{K}{2})$

RR: réseau cubique centré

Paramagnétisme de Pauli (métaux)

Métaux ne peuvent pas être considérés comme atomes isolés, les électrons sont délocalisés dans la bande de conduction

Approx électrons libres:
$$\varepsilon = \frac{\hbar^2 k^2}{2m^*}$$
 Densité d'états: $\rho(\varepsilon) = A\sqrt{\varepsilon}$

Energie de Fermi, énergie du dernier état occupé: $\varepsilon_F = \frac{\hbar^2 k_F^2}{2m^*}$

Température de Fermi $\varepsilon_F = k_B T_F$ $T_F \approx 10^4 K \gg 300 K$

Gaz d'électrons dégénéré: les propriétés d'un métal sont reliées aux électrons au voisinage de la surface de Fermi.

Paramagnétisme de Pauli (métaux)

$$n_{\downarrow}(\varepsilon) = \frac{A}{2} \int_{0}^{\varepsilon_{F} + \mu_{B}B} \sqrt{\varepsilon} d\varepsilon$$

$$M = -\mu_B(n_{\uparrow} - n_{\downarrow}) \approx \mu_B \mu_B B A \sqrt{\varepsilon_F} = \mu_B^2 \rho(\varepsilon_F) B$$

 $\chi = \mu_0 \mu_B^2 \rho(\varepsilon_F) \longrightarrow \frac{3}{2} \frac{n\mu_0 \mu_B^2}{k_B T_F}$ dans l'approximation des électrons libres

Susceptibilité magnétique des métaux est indépendante de T: $\chi_m \propto \chi_{class} imes rac{T}{T_F}$

Dépend de $\rho(\varepsilon_F)$, valeur plus élevée pour les métaux de transition (contribution de la couche d)

Diamagnétisme/Paramagnétisme

Susceptibilités magnétiques caractéristiques de substances diamagnétiques et paramagnétiques

$$H = -g\mu_B \vec{B} \cdot \sum_{i=1}^N \vec{S_i} - J \sum_{(i,j)_v} \vec{S_i} \cdot \vec{S_j} \quad (J > 0: \text{ ferro, } J < 0: \text{ antiferro})$$

Couplage au champ extérieur (paramagnétisme) + interaction entres spins qui va donner naissance au ferromagnétisme

Attention, l'origine de couplage ne vient pas de l'interaction entre moments magnétiques: $E_{mag} \sim \frac{\mu_0}{4\pi} \times \frac{\mu_B^2}{r^3}$, avec r distance entre atomes, $E_{mag} \sim 10^{-24} J$

Echelle d'énergie beaucoup trop faible, $T_C = E_{mag}/k_B < 1K$, n'explique pas les températures critiques observées, $T_C = 1000$ K pour le Fer par exemple.

L'origine du ferromagnétisme provient de la force électrostatique combinée à la statistique de Fermi.

$$E_{elec} \sim \frac{e^2}{4\pi\varepsilon_0 r} \sim qq 10^{-19} J \longrightarrow T_c \sim 10000 K$$

Modèle simple, 2 électrons occupants deux états distincts décrits par les fonctions d'onde φ_1 et φ_2 .

On considère les 4 état de spin: l'état singulet de spin S = 0 et les trois états triplet de spin S = 1

$$|S\rangle = \frac{|\uparrow\downarrow\rangle - |\downarrow\uparrow\rangle}{\sqrt{2}}$$
 antisymétrique dans l'échange des particules
 $|T\rangle: \frac{|\uparrow\downarrow\rangle + |\downarrow\uparrow\rangle}{\sqrt{2}}$, $|\uparrow\uparrow\rangle$, $|\downarrow\downarrow\rangle$, symétrique dans l'échange des particules

Les électrons sont des fermions, la fonction d'onde totale (orbitale et spin) doit être antisymétrique. Il y a donc 4 états dégénérés:

 $\frac{|\varphi_1\varphi_2\rangle+|\varphi_2\varphi_1\rangle}{\sqrt{2}}|S\rangle \text{ partie orbitale symétrique, spin antisymétrique, 1 état}$ $\frac{|\varphi_1\varphi_2\rangle-|\varphi_2\varphi_1\rangle}{\sqrt{2}}|T\rangle \text{ partie orbitale antisymétrique, spin symétrique, 3 états}$

Cette dégénérescence va être levée par l'interaction électrostatique entre les électrons: $H_{int} = \frac{e^2}{4\pi\varepsilon_0} \frac{1}{|\vec{r_1} - \vec{r_2}|}$

Approche perturbative de l'interaction: les niveaux d'énergie d'un état $|\psi\rangle$ sont déplacés par $\langle \psi | H_{int} | \psi \rangle$. On peut ignorer la partie de spin car H_{int} n'agit pas sur le spin

Singulet

$$\frac{\langle \varphi_1 \varphi_2 | + \langle \varphi_2 \varphi_1 | }{\sqrt{2}} H_{int} \frac{|\varphi_1 \varphi_2 \rangle + |\varphi_2 \varphi_1 \rangle}{\sqrt{2}} = \langle \varphi_1 \varphi_2 | H_{int} | \varphi_1 \varphi_2 \rangle + \langle \varphi_1 \varphi_2 | H_{int} | \varphi_2 \varphi_1 \rangle$$

$$Terme \text{ direct} Terme \text{ direct}$$

Triplet: résultat différent

$$\frac{\langle \varphi_1 \varphi_2 | - \langle \varphi_2 \varphi_1 |}{\sqrt{2}} H_{int} \frac{|\varphi_1 \varphi_2 \rangle - |\varphi_2 \varphi_1 \rangle}{\sqrt{2}} = \langle \varphi_1 \varphi_2 | H_{int} | \varphi_1 \varphi_2 \rangle - \langle \varphi_1 \varphi_2 | H_{int} | \varphi_2 \varphi_1 \rangle$$

On note $J = 2\langle \varphi_1 \varphi_2 | H_{int} | \varphi_2 \varphi_1 \rangle$, le terme d'interaction d'échange

Différence d'énergie $E_S - E_T = J$

Différence d'énergie $E_S - E_T = J \rightarrow$ Con peut réécrire H_{int} comme $H_{int} = E_S \mathbb{I} + \frac{E_T - E_S}{2} \vec{S}^2$ car $\vec{S}^2 = 0$ pour S = 0 et $\vec{S}^2 = 2$ pour S = 1

avec
$$\vec{S}^2 = (\vec{S}_1 + \vec{S}_2)^2 = \vec{S}_1^2 + \vec{S}_2^2 + 2\vec{S}_1 \cdot \vec{S}_2 = \frac{3}{4} + \frac{3}{4} + 2\vec{S}_1 \cdot \vec{S}_2$$

$$J/2 \text{ intégrale d'échange:} \quad \frac{J}{2} = \frac{e^2}{4\pi\varepsilon_0} \int d^3\vec{r_1} d^3\vec{r_2} \ \varphi_1^*(\vec{r_1}) \ \varphi_2^*(\vec{r_2}) \frac{1}{|\vec{r_1} - \vec{r_2}|} \ \varphi_1 \ (\vec{r_2}) \ \varphi_2 \ (\vec{r_1})$$

Signe arbitraire (ferromagnétisme ou antiferromagnétisme possibles) Non-nul uniquement pour φ_1 $(\vec{r}_1) \varphi_2^*(\vec{r}_1) \neq 0$, recouvrement entre les deux orbitales

3d, électrons délocalisés, magnétisme itinérant

4f, magnétisme localisé

On

Approximation de champ moyen

$$H = \sum_{i=1}^{N} H_{i} \qquad H_{i} = -\overrightarrow{S_{i}} \cdot \begin{bmatrix} g\mu_{B}\vec{B} + J\sum_{j \in voisins} \overrightarrow{S_{j}} \end{bmatrix} \qquad \text{Champ moléculaire}$$
On voit apparaitre l'interaction d'un spin avec un champ effectif $\vec{B}_{eff,i} = \vec{B} + \frac{J}{g\mu_{B}}\sum_{j \in v} \overrightarrow{S_{j}}$
Approximation de champ moyen: on néglige les fluctuations du champ moléculaire et on l'assimile à sa valeur moyenne: $\frac{J}{g\mu_{B}}\sum_{j \in v} \overrightarrow{S_{j}} \approx \frac{pJ}{g\mu_{B}}\left(\overrightarrow{S_{j}}\right) = \frac{pJ}{g\mu_{B}}\frac{\overrightarrow{M}}{ng\mu_{B}} \qquad p,$ nombre de voisins
$$\vec{B}_{eff} = \vec{B} + \frac{pJ}{n(g\mu_{B})^{2}}\vec{M} = \vec{B} + \lambda \vec{M}z$$
On a déjà vu (dans le cadre du paramagnétisme), le lien entre \vec{M} et \vec{B}_{eff}

Relation d'autocohérence:
$$M = \frac{ng\mu_B}{2} tanh\left(\frac{g\mu_B B_{eff}}{2k_B T}\right) \rightarrow M = \frac{ng\mu_B}{2} tanh\left(\frac{g\mu_B (B + \lambda M)}{2k_B T}\right)$$

On pose:
$$M_{\infty} = \frac{ng\mu_B}{2}$$
, $T_c = \frac{pJ}{4k_B}$ $\frac{M}{M_{\infty}} = tanh(x)$ et $\frac{M}{M_{\infty}} = \frac{T}{T_c}x - \frac{g\mu_B}{2k_BT_c}B$

Approximation de champ moyen, $T > T_C$

On pose:
$$M_{\infty} = \frac{ng\mu_B}{2}$$
, $T_c = \frac{pJ}{4k_B}$ $\frac{M}{M_{\infty}} = tanh(x)$ et $\frac{M}{M_{\infty}} = \frac{T}{T_c}x - \frac{g\mu_B}{2k_BT_c}B$

Pour
$$B \to 0, M \to 0, \frac{M}{M_{\infty}} = tanh(x) \approx x \qquad \rightarrow \frac{M}{M_{\infty}} = \frac{T}{T_c} \frac{M}{M_{\infty}} - \frac{g\mu_B}{2k_B T_c} B$$

$$\frac{M}{M_{\infty}} = \frac{g\mu_B B}{2k_B(T - T_c)} \longrightarrow \chi = \frac{C}{T - T_c} \text{ loi de Curie-Weiss}$$

Approximation de champ moyen, $T < T_C$

On pose:
$$M_{\infty} = \frac{ng\mu_B}{2}, T_c = \frac{pJ}{4k_B}$$
 $\frac{M}{M_{\infty}} = tanh(x)$ et $\frac{M}{M_{\infty}} = \frac{T}{T_c}x - \frac{g\mu_B}{2k_BT_c}B$

$$\boxed{\mathbf{T} < \mathbf{T}_c}$$

$$\boxed{\mathbf{T} < \mathbf{T}_c}$$

$$\boxed{\mathbf{T}_{c}}$$

$$\boxed{\mathbf{T$$

Diu

Ronds vides: fer Ronds pleins: cobalt et nickel

Г

$$T \ll T_c, \frac{M}{M_{\infty}} = 1 - 2e^{-2\frac{T_c}{T}} \qquad T \approx T_c^-, \frac{M}{M_{\infty}} = \sqrt{3\left(1 - \frac{T}{T_c}\right)}$$

$$H_{cm} = -g\mu_B \vec{B}_{eff} \cdot \sum_{i=1}^N \vec{S_i} + K$$

La constante K est nécessaire afin d'avoir $\langle H_{cm} \rangle = \langle H \rangle$:

$$\langle H_{cm} \rangle = -g\mu_B \vec{B}_{eff} \cdot \sum_{i=1}^N \left\langle \vec{S}_i \right\rangle + K = -V\vec{B} \cdot \vec{M} - V \frac{pJ}{n(g\mu_B)^2} M^2 + K$$

$$\langle H \rangle = -g\mu_B \vec{B} \cdot \sum_{i=1}^N \left\langle \vec{S}_i \right\rangle - J \sum_{(i,j) \in v} \left\langle \vec{S}_i \cdot \vec{S}_j \right\rangle$$

en cohérence avec le champ moyen, on néglige les corrélations entre spins: $\langle \vec{S}_i, \vec{S}_j \rangle = \langle \vec{S}_i \rangle \cdot \langle \vec{S}_j \rangle$

$$\langle H \rangle = -V\vec{B}.\vec{M} - \frac{1}{2}V\frac{pJ}{n(g\mu_B)^2}M^2$$

Pour ne pas compter deux fois l'interaction entre paires

$$K = J \frac{Np}{2} \left(\frac{VM}{Ng\mu_B} \right)^2$$

K dépend de M, il faut donc le prendre en compte pour minimiser l'énergie libre

Approximation de champ moyen, énergie libre

$$Z_{cm} = z_{cm}^N \qquad z_{cm} = \sum_{S_i = \pm 1/2} e^{\frac{-H_{cm,S_i}}{k_B T}} = 2 e^{\frac{-K}{k_B T}} \cosh\left(\frac{g\mu_B}{2k_B T}(B + \lambda M)\right)$$

$$F_{cm} = \frac{NJp}{2} \left(\frac{VM}{Ng\mu_B} \right)^2 - Nk_B T \ln \left[2\cosh\left(\frac{g\mu_B}{2k_B T} \left(B + \lambda M\right)\right) \right]$$

On pose:
$$M_{\infty} = \frac{ng\mu_B}{2}$$
, $T_c = \frac{pJ}{4k_B}$

$$F_{cm} = Nk_B \left[\frac{T_c}{2} \left(\frac{M}{M_{\infty}} \right)^2 - T \ln \left[2\cosh\left(\frac{T_c}{T} \frac{M}{M_{\infty}} + \frac{g\mu_B}{2k_B T} B \right) \right] \right]$$

Energie libre en approximation de champ moyen, champ extérieur nul

Energie libre en approximation de champ moyen, champ extérieur nul

Elements de Physique des solides: Cours 3: capacité thermique des solides, phonons

Gwendal Fève

Physique statistique dans l'ensemble canonique: on repère les états par l'indice l, leur énergie est ε_l .

La fonction de partition s'écrit: $Z = \sum_{l} e^{-\beta \varepsilon_l}$

L'énergie moyenne:
$$\langle E \rangle = \frac{\sum_l \varepsilon_l e^{-\beta \varepsilon_l}}{Z} = -\frac{\partial \ln(Z)}{\partial \beta}$$
 La capacité thermique: $C_v = \frac{\partial \langle E \rangle}{\partial T} \rangle_{N,V}$

Physique statistique classique pour 1 particule. Les états sont repérés par la position et l'impulsion: $l = (\vec{r}, \vec{p})$

$$Z_{1} = \int \frac{d^{3}\vec{r}d^{3}\vec{p}}{h^{3}}e^{-\beta H(\vec{r},\vec{p})} \qquad \text{Sans interactions,} \quad Z = (Z_{1})^{N}$$
Particule libre: $H = \frac{\vec{p}^{2}}{2m} \qquad Z_{1} = \frac{V}{h^{3}}\sqrt{2\pi m/\beta}^{3} \qquad \langle E \rangle = \frac{3}{2}Nk_{B}T \qquad C_{v} = \frac{3}{2}Nk_{B}$
Oscillateur harmonique 1D: $H = \frac{1}{2}m\omega^{2}x^{2} + \frac{p^{2}}{2m} \qquad Z_{1} = \frac{1}{h^{3}}\sqrt{2\pi/(\beta m\omega^{2})} \qquad \sqrt{2\pi m/\beta}$

$$\langle E \rangle = Nk_{B}T \qquad C_{v} = Nk_{B}$$

Capacité thermique des gaz diatomiques

2 ddl de rotation, $T_r \approx \frac{\hbar^2}{2I} \approx 80K (H_2), 2K (O_2) \searrow \text{quand } m \nearrow : \quad \frac{C_p}{R} = \frac{5}{2} + 1 \text{ pour } T \gg T_R$ 1 ddl de vibration, $T_v \approx qq \ 1000K \searrow \text{quand } m \nearrow : \quad \frac{C_p}{R} = \frac{7}{2} + 1 \text{ pour } T \gg T_V$

DGLR, Thermodynamique page 256

Capacité thermique des gaz polyatomiques

2 ddl de rotation, pour molécule linéaire (CO2) 3 sinon (NH3) $\frac{C_p}{R} = \frac{7}{2} \text{ ou} \frac{8}{2} \text{ pour } T \gg T_R$ $\frac{C_p}{R} = \frac{7}{2} + 4 = 7,5 \ (CO_2) \ T \gg T_V$ ddl de vibration: 3n-5 (linéaire) ou 3n-6 sinon: $\frac{C_p}{R} = \frac{8}{2} + 6 = 10 \ (NH_3) \ T \gg T_V$ 10 C/R 8 CO, 6 4 2 1000 3000 (K 300 DGLR, Thermodynamique, page 257

Développement du viriel pour un gaz réel

Surface de Fermi des métaux

Alcalins: très proches des électrons libres

RR: réseau cubique faces centrées

Métaux nobles: proches des électrons libres sauf au voisinage des plans de Bragg $(\vec{k}.\frac{\vec{K}}{K}=\frac{K}{2})$

RR: réseau cubique centré

Dévelopement de Sommerfeld (métaux)

Approx électrons libres:
$$\varepsilon = \frac{\hbar^2 k^2}{2m^*}$$
 Densité d'états: $\rho(\varepsilon) = A\sqrt{\varepsilon}$
Energie de Fermi: $\varepsilon_F = \frac{\hbar^2 k_F^2}{2m^*}$ $\varepsilon_F = k_B T_F$
T_F > 10⁴K \gg 300K
Gaz d'électrons dégénéré: les
propriétés d'un métal sont reliées aux
électrons au voisinage de la surface
de Fermi.
Pour T<F: développement
de Sommerfeld:
 $g(T,\mu) = \int d\varepsilon f(\varepsilon,T,\mu)h(\varepsilon) \approx g(0,\mu) + \frac{\pi^2}{6}(k_B T)^2 \frac{dh}{d\varepsilon}(\mu) + O(T^4)$
 $n(T,\mu) = \int d\varepsilon f(\varepsilon,T,\mu)\rho(\varepsilon) \approx \frac{2}{3}A\mu^{\frac{3}{2}} + \frac{\pi^2}{6}(k_B T)^2 \frac{1}{2\sqrt{\mu}} + O(T^4)$ mais on a aussi: $n = \frac{2}{3}A\varepsilon_F^{3/2}$
 $\mu = \varepsilon_F \left[1 - \frac{\pi^2}{12}\left(\frac{T}{T_F}\right)^2 + O\left(\frac{T}{T_F}\right)^4\right]$

Capacité thermique des métaux, contribution électronique

Energie du gaz de Fermions
libres pour T<F:

$$U = V \int d\varepsilon f(\varepsilon, T, \mu) \varepsilon \rho(\varepsilon) \approx \frac{2}{5} A V \mu^{5/2} + \frac{\pi^2}{6} (k_B T)^2 \frac{3}{2} A V \mu^{1/2} + O(T^4)$$

$$U = U_0 \left[1 + \frac{5\pi^2}{12} \left(\frac{T}{T_F} \right)^2 + O\left(\frac{T}{T_F} \right)^4 \right]$$

$$C_V = \frac{\pi^2}{2} N k_B \frac{T}{T_F}$$

Gaz parfait de fermions dégénérés: seule une fraction T/T_F des électrons ne sont pas gelés:

• N atomes dans le cristal= N oscillateurs harmoniques 3D

$$H = \sum_{i=1}^{N} \left(\frac{\vec{p}_i^2}{2m} + \frac{1}{2} m \omega_0^2 \vec{r}_i^2 \right) \qquad \qquad \varepsilon_{n_1, n_2, n_3} = (n_1 + n_2 + n_3 + 3/2) \hbar \omega_0$$

• Fonction de partition 1 atome:
$$z = \sum_{n_1, n_2, n_3} e^{-\beta \varepsilon_{n_1, n_2, n_3}} = \left(\sum_{n=0}^{+\infty} e^{-\beta(n+1/2)\hbar\omega_0}\right)^3 = \left(\frac{e^{-\beta\hbar\omega_0/2}}{1 - e^{-\beta\hbar\omega_0}}\right)^3$$

$$\left(\frac{e^{-\beta\hbar\omega_0/2}}{1-e^{-\beta\hbar\omega_0}}\right)^{5N}$$
 Distribution

. 3N

Distribution de Bose-Einstein

• Energie:
$$U = \frac{-\partial \ln(Z)}{\partial \beta} = 3N \frac{\hbar \omega_0}{2} + \frac{3N\hbar \omega_0}{e^{\beta\hbar\omega_0} - 1} = (\langle n \rangle + 1/2)\hbar \omega_0 3N$$

Z =

• Capacité $C = \frac{\partial U}{\partial T} = 3Nk_B \left(\frac{\beta\hbar\omega_0}{2sinh(\beta\hbar\omega_0/2)}\right)^2$

 $C \approx 3Nk_B$ pour $\beta \hbar \omega_0 \ll 1$ Limite classique (Dulong et Petit)

$$C \approx e^{-\beta \hbar \omega_0}$$
 pour $\beta \hbar \omega_0 \gg 1$

Gap

Points expérimentaux=capacité thermique du diamant

Problème à basse temperature, on n'observe pas de décroissance exponentielle de la capacité thermique

Capacité thermique des solides: modèle de Debye

Chaine d'oscillateurs couplés, pour simplifier, on traite le cas 1D $\begin{array}{c} u & \omega_0 \\ \cdots & u_n & u_{n+1} & u_{n+2} \end{array}$ $H = \sum \frac{\dot{p}_n^2}{2m} + \frac{1}{2}m\omega_0^2 \sum (u_{n+1} - u_n)^2$ u_{n+2} On passe en espace de Fourier: $u_n = \frac{1}{\sqrt{N}} \sum_{i} \tilde{u}_q e^{iqna}$ $p_n = \frac{1}{\sqrt{N}} \sum_{a} \tilde{p}_q e^{iqna}$ $\sum_{n} p_n^2 = \frac{1}{N} \sum_{n,q,q'} \tilde{p}_q \tilde{p}_{q'} e^{iqna} e^{iq'na} = \sum_{q,q'} \tilde{p}_q \tilde{p}_{q'} \delta_{q,-q'} = \sum_{q} |\tilde{p}_q|^2$ $\sum_{n} (u_{n+1} - u_n)^2 = \sum_{n} |\tilde{u}_q|^2 |e^{iqa} - 1|^2 = 4 \sum_{n} |\tilde{u}_q|^2 sin(qa/2)^2$

$$H = \sum_{q} \frac{|\tilde{p}_{q}|^{2}}{2m} + 2m\omega_{0}^{2} \sum_{q} |\tilde{u}_{q}|^{2} sin(qa/2)^{2}$$

Capacité thermique des solides: modèle de Debye

q est limité à la première zone de Brillouin, $q \in \left[-\frac{\pi}{a}, \frac{\pi}{a}\right]$ en effet, soit $q' = q + \frac{2\pi}{a}$:

$$\tilde{u}_{q\prime} = \frac{1}{\sqrt{N}} \sum_{n} u_n e^{-iq\prime na} = \frac{1}{\sqrt{N}} \sum_{n} u_n e^{-iqna} e^{-i2\pi n} = \tilde{u}_q$$

Conditions aux limites périodiques: $u_{n+N} = \frac{1}{\sqrt{N}} \sum_{q} \tilde{u}_{q} e^{iq(n+N)a} = u_{n} \rightarrow e^{iqNa} = 1 \rightarrow q = \frac{2\pi}{a} \frac{m}{N}$

$$m \in \left[-\frac{N}{2}, \frac{N}{2}\right[\text{ (PZB), N modes normaux indicés par q} \\ \varepsilon_{q,n} = (n + \frac{1}{2})\hbar\omega_q \qquad \omega_q = 2\omega_0|\sin(qa/2)| \\ C = k_B \sum_q \left(\frac{\beta\hbar\omega_q}{2\sinh\left(\frac{\beta\hbar\omega_q}{2}\right)}\right)^2 = k_B \int d\omega g(\omega) \left(\frac{\beta\hbar\omega}{2\sinh\left(\frac{\beta\hbar\omega}{2}\right)}\right)^2$$

$$g(\omega) = \frac{dN}{d\omega}$$
: dos

Modes de phonons: densité d'états

Basse énergie: seuls les modes de basse énergie sont peuplés $\omega \approx v_s |\vec{q}|$

On revient au cas 3D: nombre d'états dans une sphère de rayon q_0

$$N_m = 3 * \frac{\frac{4}{3}\pi q_0^3}{\left(\frac{2\pi}{L}\right)^3} = 3 * \frac{\frac{4}{3}\pi \omega_0^3}{\left(v_s \frac{2\pi}{L}\right)^3} \to g(\omega) = \frac{3}{2} \frac{V\omega^2}{v_s^3 \pi^2}$$

Directions de polarisation

On sait que le nombre total de modes est de 3N, cela impose une fréquence maximum pour les modes de phonons ω_D appelée la fréquence de Debye:

$$3N = \int_0^{\omega_D} d\omega \frac{3}{2} \frac{V\omega^2}{v_s^3 \pi^2} = \frac{1}{2} \frac{V\omega_D^3}{v_s^3 \pi^2} \to \omega_D = v_S \left(\frac{6N\pi^2}{V}\right)^{1/3}$$
qui fixe une échelle de température: $\theta_D = \frac{\hbar\omega_D}{k_B}$

Ordres de grandeur: Na:150K, Cu:315K, Ag:215K.... qq 100K Liée à la dureté du matériau (vitesse du son), Pb (mou) 96K, Diamant (dur) 2200K

 $T \gg \theta_D$, régime classique, tous les modes sont peuplés par des phonons

 $T \ll \theta_D$, régime quantique, beaucoup de modes sont gelés, seuls les modes de très basse température sont peuplés

$$C = \int_{0}^{\omega_{D}} d\omega \frac{3}{2} \frac{V \omega^{2}}{v_{s}^{3} \pi^{2}} \left(\frac{\beta \hbar \omega}{2 \sinh\left(\frac{\beta \hbar \omega}{2}\right)} \right)^{2}$$

 $T \gg \theta_D$: $\beta \hbar \omega \ll 1$ $C \approx \int_0^{\omega_D} d\omega \frac{3}{2} \frac{V \omega^2}{v_s^3 \pi^2} = 3N k_B$ on retrouve Dulong et Petit

$$T \ll \theta_D: \ \beta \hbar \omega \gg 1 \qquad C = \int_0^{\omega_D} d\omega \frac{3}{2} \frac{V \beta^2 \hbar^2 \omega^4}{v_s^3 \pi^2} \frac{e^{\beta \hbar \omega}}{\left(e^{\beta \hbar \omega} - 1\right)^2}$$

$$x = \beta \hbar \omega \qquad C \approx 9Nk_B \left(\frac{T}{\theta_D}\right)^3 \int_0^{\frac{\theta_D}{T}} dx \, x^4 \frac{e^x}{(e^x - 1)^2} \approx 9Nk_B \left(\frac{T}{\theta_D}\right)^3 \int_0^{+\infty} dx \, x^4 \frac{e^x}{(e^x - 1)^2}$$
$$= \frac{4\pi^4}{15}$$
$$C \approx \frac{12\pi^4}{5} Nk_B \left(\frac{T}{\theta_D}\right)^3$$

Comparaison modèle de Debye et modèle d'Einstein

Modèle de Debye

Kittel

Mesure capacité thermique Argon solide à basse température

Kittel

 $\theta_D = 92 K (Ar)$ L. Finegold et N.E. Phillips

La température de Debye joue aussi un rôle dans la conduction électronique des métaux

 $T \gg \theta_D$: nombre moyen de phonons par mode:

$$n_B(\omega) = \frac{1}{e^{\frac{\hbar\omega}{k_BT}} - 1} \approx \frac{k_BT}{\hbar\omega}$$

Évolution linéaire en température $\rho\!\sim\!T$

 $T \ll \theta_D$: les modes de phonons sont gelés, la contribution des phonons à la résistivité est limitée aux modes de très basse énergie, $\rho \sim \left(\frac{T}{\Theta_D}\right)^5$, évolution algébrique, cf C_v

Phonons optiques

2 atomes par maille (on suppose les
atomes identiques), modèle 1D pour
simplifier

$$H = \sum_{n} \frac{\vec{p}_{1,n}^2}{2m} + \sum_{n} \frac{\vec{p}_{2,n}^2}{2m} + \frac{1}{2}m\omega_1^2 \sum_{n} (u_{1,n+1} - u_{2,n})^2 + \frac{1}{2}m\omega_2^2 \sum_{n} (u_{2,n+1} - u_{1,n+1})^2$$

$$\tilde{u}_{q,i} = \frac{1}{\sqrt{N}} \sum_{n} u_{n,i}e^{-iqna} \qquad H = \sum_{n} \frac{\vec{p}_{1,n}^2}{2m} + \sum_{n} \frac{\vec{p}_{2,n}^2}{2m} + \frac{1}{2}m \sum_{n} \vec{u}_q^* M \vec{u}_q$$

$$\vec{u}_q = \begin{pmatrix} \tilde{u}_{q,1} \\ \tilde{u}_{q,2} \end{pmatrix} \qquad M = \begin{pmatrix} \omega_1^2 + \omega_2^2 \\ \omega_1^2 e^{-iqa} + \omega_2^2 \end{pmatrix} \qquad \omega_+ \text{ Branche optique}$$
Modes propres:
deux branches

$$\omega_{+/-}^2 = \omega_1^2 + \omega_2^2 \pm \sqrt{\omega_1^4 + \omega_2^4 + 2\omega_1^2\omega_2^2 \cos(qa)} \qquad \omega_- \text{ Branche acoustique}$$

→ decroissance exponentielle de la contribution des phonons optiques à la capacité thermique à basse température

Relation de dispersion des modes de phonons: diffusion inélastique de neutrons dans l'Aluminium

Ashcroft et Mermin

Halloul, Physique des électrons dans les solides Tome 2

Eléments de Physique des solides: Cours 4: transport, conductivité électrique et thermique

Gwendal Fève

DENS Approximation semi-classique pour les électrons de Bloch

Description semi-classique du transport des électrons d'une bande d'énergie $\varepsilon_{n,\vec{k}}$

Vitesse d'un électron de Bloch: $\frac{d\vec{r}}{dt} = \vec{v}_{n,\vec{k}} = \frac{1}{\hbar} \vec{\nabla}_{\vec{k}} \varepsilon_{n,\vec{k}}$ $\vec{E}(\vec{r})$ varie lentement à l'échelle de la maille du réseau, on reste dans une bande donnée:

$$\hbar \frac{dk}{dt} = -e\vec{E} \longrightarrow \vec{k}(t) = \vec{k}_0 - \frac{e\vec{E}}{\hbar}t$$

Pour une bande non-pleine, à priori oscillations (de Bloch) avec une période $T = \frac{h}{eEa} \sim ps$ mais le temps de collision est plus court

Densité de courant totale portée par une bande (approximation des électrons libres):

$$\langle \vec{j}_{e,n} \rangle = \int d^3 \vec{k} \rho(\vec{k}) (-e\vec{v}_{n,\vec{k}}) f\left(\vec{k}\right) = -2 \frac{e}{V} \int \frac{d^3 \vec{k}}{\left(\frac{2\pi}{L}\right)^3} \frac{\hbar \vec{k}}{m} f\left(\vec{k}\right)$$

densité d'états spin

 $f\left(\vec{k}\right)$: probabilité d'occupation d'un état de quasi-impulsion $\hbar \vec{k}$

par unité de volume

densité de charge d'un e-

 $\langle \vec{j}
angle = \vec{0}$ pour une bande pleine: une bande pleine ne conduit pas

Effet des collisions: loi d'Ohm

Bande partiellement remplie (métal), collisions avec un temps moyen τ entre deux collisions

Effet des collisions: loi d'Ohm

Densité de courant moyenne:

$$\begin{aligned} \langle \vec{j} \rangle &= -e \int d^3 \vec{k} \rho(\vec{k}) \vec{v}_{\vec{k}} (f_0 + f_1) = e^2 \int d^3 \vec{k} \rho(\vec{k}) \vec{v}_{\vec{k}} \tau \vec{E} \cdot \vec{v}_{\vec{k}} \left(-\frac{\partial f_0}{\partial \varepsilon} \right) \\ \vec{E} &= E \vec{e}_x \qquad \langle j_x \rangle = e^2 \int d^3 \vec{k} \rho(\vec{k}) \frac{v_x^2}{3} \tau \left(-\frac{\partial f_0}{\partial \varepsilon} \right) \\ E \implies \sigma = \frac{2e^2}{3m} \int d\varepsilon \rho(\varepsilon) \varepsilon \tau(\varepsilon) \left(-\frac{\partial f_0}{\partial \varepsilon} \right) \end{aligned}$$

On pose:
$$\sigma(\varepsilon) = \frac{2e^2}{3m}\rho(\varepsilon)\varepsilon\,\tau(\varepsilon)$$
 $\sigma = \int d\varepsilon\sigma(\varepsilon)\left(-\frac{\partial f_0}{\partial\varepsilon}\right)$

On définit: $N(\varepsilon) = \int_0^{\varepsilon} d\varepsilon \rho(\varepsilon) = \frac{2}{3}\rho(\varepsilon) \varepsilon$

La densité n peut alors s'exprimer comme n = $\int_0^{+\infty} d\epsilon \rho(\epsilon) f(\epsilon) = \int_0^{+\infty} d\epsilon N(\epsilon) \left(-\frac{\partial f_0}{\partial \epsilon}\right)$

Et
$$\sigma = \frac{ne^2}{m} \langle \tau \rangle$$
 avec $\langle \tau \rangle = \frac{\int d\varepsilon N(\varepsilon) \tau(\varepsilon) \left(-\frac{\partial f_0}{\partial \varepsilon}\right)}{\int d\varepsilon N(\varepsilon) \left(-\frac{\partial f_0}{\partial \varepsilon}\right)}$

Cas du métal

$$\langle \tau \rangle \approx \tau(\varepsilon_F) \qquad \longrightarrow \qquad \sigma = \frac{ne^2 \tau(\varepsilon_F)}{m}$$

Tout se passe comme si tous les électrons se déplaçaient à la vitesse moyenne $\langle \vec{v} \rangle = -\frac{e\tau}{m}\vec{E}$

Cette interprétation n'est pas correcte, en réalité, une petite partie des électrons au voisinage de la surface de Fermi contribue au courant. Ces électron se déplacent à la grande vitesse v_F

Le libre parcours moyen est donc $l = v_F \tau(\varepsilon_F)$ (et non pas $l = \sqrt{\langle v^2 \rangle} \tau$ ou $\sqrt{\langle v^2 \rangle}$ est la vitesse moyenne avec une distribution de vitesse donnée par la distribution de Boltzmann)

Valeur typique pour métaux, température ambiante: $\rho_e \approx 1 - 100 \times 10^{-8} \Omega m$ résistivité électrique $\rightarrow \tau \approx 10^{-14} s \rightarrow l \approx 10 nm$ largement supérieur à la distance entre atomes du réseau

Règle de Mathiessen

Origine des collisions:

- Impuretés τ_{imp}
- Phonons (vibrations) au_{ph}
-

Probabilité de collision pendant dt:

$$dP = dP_{imp} + dP_{ph}$$
$$dP = \frac{dt}{\tau_{imp}} + \frac{dt}{\tau_{ph}} = \frac{dt}{\tau_{tot}}$$

Avec τ_{tot} temps de collision prenant en compte tous les processus

$$\frac{1}{\tau_{tot}} = \frac{1}{\tau_{imp}} + \frac{1}{\tau_{ph}} \longrightarrow \rho_{tot} = \rho_{imp} + \rho_{ph} = \rho_{imp} + A * T$$

Pour un métal pur, le rapport de résistivité $\rho_{tot}(T = 0)/\rho_{tot}(T)$ peut atteindre 10^{-6} correspondant à un libre parcours moyen de l'ordre du mm/cm à très basse température

Résistivité de différents métaux

Cas du semiconducteur

$$\sigma = \frac{ne^2}{m} \langle \tau \rangle \quad \text{avec} \quad \langle \tau \rangle = \frac{\int d\varepsilon N(\varepsilon) \tau(\varepsilon) \left(-\frac{\partial f_0}{\partial \varepsilon} \right)}{\int d\varepsilon N(\varepsilon) \left(-\frac{\partial f_0}{\partial \varepsilon} \right)}$$

En règle générale, $\tau(\varepsilon) = A\varepsilon^{\alpha}$ $\langle \tau \rangle = A \frac{\int d\varepsilon \ \varepsilon^{\alpha} N(\varepsilon) \left(-\frac{\partial f_0}{\partial \varepsilon}\right)}{\int d\varepsilon N(\varepsilon) \left(-\frac{\partial f_0}{\partial \varepsilon}\right)} = C(k_B T)^{\alpha}$

On introduit la mobilité μ définie par $\langle \vec{v} \rangle = \mu \vec{E}$ On a alors $\sigma = qn\mu$ et $\mu = \frac{q\langle \tau \rangle}{m}$

q est la charge des porteurs, q=-e pour les électrons et q=+e pour les trous

L'introduction de la mobilité μ permet de séparer la dépendance en température du temps de collision $\langle \tau \rangle$ de la très forte dépendance de la densité de porteurs (dans le régime intrinsèque d'un semiconducteur, voir plus loin).

On peut mesurer simultanément la densité de porteurs et la mobilité par des mesures d'effet Hall.

Mobilité dans les semiconducteurs

L. Pfeiffer et al., APL 55 1888 (1989)

Mobilité dans GaAs massif, comparaison entre théorie/mesures

G. E. Stillman and C. M. Wolfe, Thin Solid Films 31 69 (1976)

NS Mobilité dans les hétérostructures GaAs/AlGaAs

Semiconducteur intrinsèque: densité de porteurs (cf TD J.N. Aqua)

_ P E N

Impuretés donneurs d'électrons: 1 atome de valence de plus que les atomes du cristal Exemple: Phosphore dans Si ou Ge Densité de donneurs: n_d typiquement $n_d \approx 10^{16} cm^{-3}$

Régime dopé (températures intermédiaires):

 $n_e pprox n_d$, $n_h pprox 0
ightarrow n_e
eq n_h$

Dans ce régime, on a $n_i(T) \ll n_d$

Lorsque l'on augmente T (haute température) on atteint $n_i(T) \ge n_d$, on retrouve alors le régime intrinsèque

Impuretés donneurs d'électrons: 1 atome de valence de plus que les atomes du cristal Exemple: Phosphore dans Si ou Ge Densité de donneurs: n_d typiquement $n_d \approx 10^{16} cm^{-3}$

Conductivité d'un semiconducteur

Figure 28.2

The resistivity of antimony-doped germanium as a function of 1/T for several impurity concentrations. (From H. J. Fritzsche, J. Phys. Chem. Solids 6, 69 (1958).)

Equation de Boltzmann

On cherche la fonction de distribution $f(\vec{r}, \vec{k}, T) = f_0 + f_1$ avec $f_1 \ll f_0$

et f_0 fonction de distribution à l'équilibre (Fermi-Dirac) avec éventuellement une température et un potentiel chimique qui dépendent de la position \vec{r}

L'équation de Boltzmann s'écrit:
$$\frac{df}{dt} = -\frac{f_1}{\tau} \implies \frac{d\vec{r}}{dt} \cdot \vec{\nabla}_{\vec{r}}f + \frac{d\vec{k}}{dt} \cdot \vec{\nabla}_{\vec{k}}f + \frac{\partial f}{\partial t} = -\frac{f_1}{\tau}$$
Au premier ordre en f_1 et en régime stationnaire, on a: $\vec{v} \cdot \vec{\nabla}_{\vec{r}}f_0 + \frac{q}{\hbar}\vec{E} \cdot \vec{\nabla}_{\vec{k}}f_0 = -\frac{f_1}{\tau}$
Avec $\vec{\nabla}_{\vec{r}}f_0 = \left[\frac{\vec{\nabla}_{\vec{r}}\mu}{k_BT} + \frac{(\varepsilon - \mu)\vec{\nabla}_{\vec{r}}T}{k_BT^2}\right]k_BT\left(-\frac{\partial f_0}{\partial \varepsilon}\right)$ et $\vec{\nabla}_{\vec{k}}f_0 = -\hbar\vec{v}\left(-\frac{\partial f_0}{\partial \varepsilon}\right)$

$$f_1 = -\tau\vec{v} \cdot \left[\vec{\nabla}_{\vec{r}}(\mu + q\phi) + \frac{(\varepsilon - \mu)\vec{\nabla}_{\vec{r}}T}{T}\right]\left(-\frac{\partial f_0}{\partial \varepsilon}\right)$$
avec $\vec{E} = -\vec{\nabla}\phi$

Cette forme généralise ce qui a été vu précédemment pour le champ électrique, elle permet la compréhension de l'ensemble des phénomènes de transport électronique

 $\vec{\Sigma} = -\vec{\nabla}_{\vec{r}} (\phi - \frac{\mu}{a})$

Coefficients de transport

Courant électrique:
$$\vec{J}_e = \int d^3 \vec{k} \rho(\vec{k})(-e) \ \vec{v}_{\vec{k}} f_1$$

 $\vec{J}_e = L^{11} \vec{\Sigma} + L^{12} (-\vec{\nabla}T)$
Courant de chaleur: $\vec{J}_Q = \int d^3 \vec{k} \rho(\vec{k}) (\varepsilon_{\vec{k}} - \mu) \ \vec{v}_{\vec{k}} f_1$
 $\vec{J}_Q = L^{21} \vec{\Sigma} + L^{22} (-\vec{\nabla}T)$

On pose:
$$\Lambda^{(n)} = \int d\varepsilon (\varepsilon - \mu)^n \sigma(\varepsilon) \left(-\frac{\partial f_0}{\partial \varepsilon} \right)$$
 et $\sigma(\varepsilon) = \frac{2e^2}{3m} \rho(\varepsilon) \varepsilon \tau(\varepsilon)$

Alors:
$$L^{11} = \Lambda^{(0)}$$
 $L^{12} = -\frac{\Lambda^{(1)}}{eT}$ $L^{21} = -\frac{\Lambda^{(1)}}{e}$ $L^{22} = \frac{\Lambda^{(2)}}{e^2T}$

Cas du métal:
$$L^{11} = \Lambda^{(0)} = \int d\varepsilon \,\sigma(\varepsilon) \left(-\frac{\partial f_0}{\partial \varepsilon}\right) \approx \sigma(\varepsilon_F)$$

 $\Lambda^{(1)} = \int d\varepsilon \,(\varepsilon - \mu) \sigma(\varepsilon) \left(-\frac{\partial f_0}{\partial \varepsilon}\right) \approx \sigma'(\varepsilon_F) \frac{\pi^2}{3} (k_B T)^2$
 $\Lambda^{(2)} = \int d\varepsilon \,(\varepsilon - \mu)^2 \sigma(\varepsilon) \left(-\frac{\partial f_0}{\partial \varepsilon}\right) \approx \sigma \,(\varepsilon_F) \frac{\pi^2}{3} (k_B T)^2$

Densité de courant de chaleur reliée au gradient de température par: $\langle \vec{j}_Q \rangle = -\kappa \vec{\nabla} T$ Attention, elle est définie en l'absence de courant électrique: $\langle \vec{j}_e \rangle = \vec{0}$

$$\kappa = L^{22} - \frac{L^{21}L^{12}}{L^{11}} \approx L^{22} = \sigma (\varepsilon_F) \frac{\pi^2}{3e^2} k_B^2 T$$
On définit $\mathcal{L}_{qu} = \frac{\kappa}{\sigma T} = \frac{\pi^2}{3} \left(\frac{k_B}{e}\right)^2 = 2.45 \times 10^{-8} W. \Omega. K^{-2}$ c'est la loi de Wiedemann-Franz
Note: En théorie cinétique classique des gaz: $\kappa = \frac{1}{3} C_V \langle v \rangle l$
Pour un gaz parfait classique: $\langle v \rangle = \sqrt{\langle v^2 \rangle} = \frac{3k_BT}{m}$, Capacité thermique: $C_V = \frac{3}{2}nk_B$
 $\rightarrow \mathcal{L}_{class} = \frac{\kappa}{\sigma T} = \frac{3}{2} \left(\frac{k_B}{e}\right)^2 = 1.12 \times 10^{-8} W. \Omega. K^{-2}$

Excellent accord de \mathcal{L}_{qu} avec les valeurs mesurées de \mathcal{L}

Métal	$\sigma [10^7 \Omega^{-1} m^{-1}]$	$[10^2 \text{watt } m^{-1} \text{K}^{-1}]$	\mathcal{L} [10 ⁻⁸ watt. Ω .K ⁻²]
Cu	6.45	3.85	2.18
Ag	6.6	4.18	2.31
Be	3.6	2.3	2.34
Mg	2.54	1.5	2.16
Al	4.0	2.38	2.18
Ph	0.52	0.35	2.46

On cherche le gradient de potentiel résultant d'un gradient de température en l'absence de courant électrique, $\langle \vec{j}_e \rangle = \vec{0}$

$$\vec{\Sigma} = \frac{L^{12}}{L^{11}} \vec{\nabla} T = Q \vec{\nabla} T$$

On en déduit que pour un métal: Q

$$Q = -\frac{\pi^2}{3} \left(\frac{k_B}{e}\right) k_B T \left(\frac{\sigma'}{\sigma}\right)$$

En utilisant: $\tau(\varepsilon_F) = A\varepsilon_F^{\alpha}$ \longrightarrow $\left(\frac{\sigma'}{\sigma}\right) \approx \frac{1}{\varepsilon_F}$ \longrightarrow $Q \approx \left(\frac{k_B}{e}\right) \left(\frac{T}{T_F}\right) \approx 10^{-6} V.K^{-1}$